148 research outputs found

    Combined Microscopy, Calorimetry and X-ray Scattering Study of Fluorinated Dimesogens

    Get PDF
    The material FDO11DFCB3 (compound 2 in this work) remains the only example of a liquid-crystalline material to exhibit a phase transition from the heliconical twist-bend phase into a lamellar smectic A mesophase, additionally this material exhibits a previously unidentified mesophase. We have prepared and characterised several homologues of this compound, with each material subjected to an in-depth analysis by optical microscopy, calorimetry and small angle X-ray scattering studies. Despite FDO11DFCB3 being similar in chemical structure to the novel materials presented herein its liquid-crystalline behaviour is rather different, indicating an unexpected sensitivity of the twist-bend phase to molecular structure

    The Dependency of Nematic and Twist-bend Mesophase Formation on Bend Angle

    Get PDF
    We have prepared and studied a family of cyanobiphenyl dimers with varying linking groups with a view to exploring how molecular structure dictates the stability of the nematic and twist-bend nematic mesophases. Using molecular modelling and 1D (1)H NOESY NMR spectroscopy, we determine the angle between the two aromatic core units for each dimer and find a strong dependency of the stability of both the nematic and twist-bend mesophases upon this angle, thereby satisfying earlier theoretical models

    Guest-host systems containing anthraquinone dyes with multiple visible transitions giving positive and negative dichroic order parameters : an assessment of principal molecular axes and computational methods

    Get PDF
    Three 1,4-disubstituted anthraquinone dyes with bis(4-n-butylphenyl) substituents connected via amine or amide linking groups have been studied as guest molecules dissolved in the nematic host E7. UV-visible absorption spectroscopy has shown each of the dyes to exhibit multiple absorption bands in the visible region, and dichroic order parameters obtained from polarised spectra of aligned guest–host samples were shown to differ significantly between the bands for each dye, and between the dyes. Time-dependent density functional theory calculations indicated that each dye exhibits several transitions, giving transition dipole moment vectors with a range of orientations, and fully atomistic molecular dynamics simulations of the guest–host mixtures showed differences in the calculated molecular alignments of the dyes. Combining the results from these two sets of calculations enabled a comparison of molecular alignment models based on the moments of inertia and the surface tensors of the dyes. The match between calculated and experimental values was improved significantly when using the surface tensor rather than the moment of inertia model, indicating that the shapes of the molecular surfaces of these dyes are crucial to their alignment. A novel method of calculating polarised UV-visible absorption spectra of dyes in liquid crystal hosts is also presented

    Conformational landscapes of bimesogenic compounds and their implications for the formation of modulated nematic phases

    Get PDF
    The twist-bend phase (NTB) is most commonly observed in materials with a gross-bent shape: dimers; bent-cores; bent-oligomers. We had suggested previously that the bend-angle of such systems effectively dictates the relative thermal stability of the NTB phase. However, our earlier paper relied on the use of a single energy-minimum conformer and so failed to capture any information about flexibility and conformational distribution. In the present work, we revisit our hypothesis and examine a second set of dimers with varying linking groups and spacer composition. We have improved on our earlier work by studying the conformational landscape of each material, allowing average bend-angles to be determined as well as the conformer distribution. We observe that the stability of the NTB phase exhibits a strong dependence not only on the Boltzmann-weighted average bend-angle (rather than just a static conformer), but also on the distribution of conformers. To a lesser extent, the flexibility of the spacer appears important. Ultimately, this work satisfies both theoretical treatments and our initial experimental study and demonstrates the importance of molecular bend to the NTB phase

    Structure–Property Relationships in Auxetic Liquid Crystal Elastomers—The Effect of Spacer Length

    Get PDF
    Auxetics are materials displaying a negative Poisson’s ratio, i.e., getting thicker in one or both transverse axes when subject to strain. In 2018, liquid crystal elastomers (LCEs) displaying auxetic behaviour, achieved via a biaxial reorientation, were first reported. Studies have since focused on determining the physics underpinning the auxetic response, with investigations into structure–property relationships within these systems so far overlooked. Herein, we report the first structure–property relationships in auxetic LCEs, examining the effect of changes to the length of the spacer chain. We demonstrate that for LCEs with between six and four carbons in the spacer, an auxetic response is observed, with the threshold strain required to achieve this response varying from 56% (six carbon spacers) to 81% (four carbon spacers). We also demonstrate that Poisson’s ratios as low as −1.3 can be achieved. Further, we report that the LCEs display smectic phases with spacers of seven or more carbons; the resulting internal constraints cause low strains at failure, preventing an auxetic response. We also investigate the dependence of the auxetic threshold on the dynamics of the samples, finding that when accounting for the glass transition temperature of the LCEs, the auxetic thresholds converge around 56%, regardless of spacer length

    Photoswitching of Dihydroazulene Derivatives in Liquid-Crystalline Host Systems

    Get PDF
    Photoswitches and dyes in the liquid-crystalline nematic phase have the potential for use in a wide range of applications. A large order parameter is desirable to maximize the change in properties induced by an external stimulus. A set of photochromic and nonphotochromic dyes were investigated for these applications. It was found that a bent-shaped 7-substituted dihydroazulene (DHA) photoswitch exhibited liquid-crystalline properties. Further investigation demonstrated that this material actually followed two distinct reaction pathways on heating, to a deactivated form by a 1,5-sigmatropic shift and to a linear 6-substituted DHA. In addition, elimination of hydrogen cyanide from the photoactive DHA gave both bent and linear azulene dyes. In a nematic host that has no absorbance around 350 nm, it was found that only the linear DHA derivative has nematic properties; however, both 6- and 7-substituted DHAs were found to have large order parameters. In the nematic host, ring opening of either DHA to the corresponding vinylheptafulvene resulted in a decrease in dichroic order parameter and an unusually fast back-reaction to a mixture of both DHAs. Likewise, only the linear azulene derivative showed mesomorphic properties. In the same nematic host, large order parameters were also observed for these dyes

    Liquid Crystal Elastomers for Biological Applications

    Get PDF
    The term liquid crystal elastomer (LCE) describes a class of materials that combine the elastic entropy behaviour associated with conventional elastomers with the stimuli responsive properties of anisotropic liquid crystals. LCEs consequently exhibit attributes of both elastomers and liquid crystals, but additionally have unique properties not found in either. Recent developments in LCE synthesis, as well as the understanding of the behaviour of liquid crystal elastomers—namely their mechanical, optical and responsive properties—is of significant relevance to biology and biomedicine. LCEs are abundant in nature, highlighting the potential use of LCEs in biomimetics. Their exceptional tensile properties and biocompatibility have led to research exploring their applications in artificial tissue, biological sensors and cell scaffolds by exploiting their actuation and shock absorption properties. There has also been significant recent interest in using LCEs as a model for morphogenesis. This review provides an overview of some aspects of LCEs which are of relevance in different branches of biology and biomedicine, as well as discussing how recent LCE advances could impact future applications

    Toward In Silico Design of Highly Tunable Liquid Crystal Elastomers

    Get PDF
    In this work, a two-component acrylate liquid crystal elastomer, with varying composition and templating phase, is synthesized in the laboratory and investigated in parallel using atomistic molecular dynamics simulations. The anisotropic nature of both the mono- and bifunctional acrylates used in this study enables a large tunability in the compositional range while still retaining liquid crystalline properties in the final elastomer. The use of simulations allows important evaluation and comparison of physical properties such as glass transition temperature, nematic to isotropic phase transition temperature, and order parameter. The dependence of physical properties (glass transition, nematic to isotropic transition, order parameter, coefficient of thermal expansion, and mechanical properties) is established as a function of chemical composition, showing a high degree of tunability. Interestingly, the templating phase (nematic or isotropic) is also shown to impact the subsequent elastomer properties, with excellent agreement shown here between experiments and simulations. The in silico approach to polymerization, coupled with excellent comparison with the experimental system, represents a new methodology for the targeted design of liquid crystal elastomers with specific physical properties

    Understanding the twist-bend nematic phase: the characterisation of 1-(4-cyanobiphenyl-4'-yloxy)-6-(4-cyanobiphenyl-4'-yl) hexane (CB6OCB) and comparison with CB7CB

    Get PDF
    Acknowledgements The FFTEM data were obtained at the (Cryo) TEM facility at the Liquid Crystal Institute, Kent State University, supported by the Ohio Research Scholars Program Research Cluster on Surfaces in Advanced Materials. ODL acknowledges the support of NSF DMR-1410378 grant. The authors are grateful for financial support from MINECO/FEDER MAT2015-66208-C3-2-P and from the Gobierno Vasco (GI/IT-449-10) OA via RSC Gold4GoldPeer reviewedPublisher PD

    Spontaneous Symmetry Breaking in Polar Fluids

    Get PDF
    Spontaneous symmetry breaking and emergent polar order are each of fundamental importance to a range of scientific disciplines, as well as generating rich phase behaviour in liquid crystals (LCs). Here, we show the union of these phenomena to lead to two previously undiscovered polar liquid states of matter. Both phases have a lamellar structure with an inherent polar ordering of their constituent molecules. The first of these phases is characterised by polar order and a local tilted structure; the tilt direction processes about a helix orthogonal to the layer normal, the period of which is such that we observe selective reflection of light. The second new phase type is anti-ferroelectric, with the constituent molecules aligning orthogonally to the layer normal. This has led us to term the phases the SmCHP and SmAAF phases, respectively. Further to this, we obtain room temperature ferroelectric nematic (NF) and SmCHP phases via binary mixture formulation of the novel materials described here with a standard NF compound (DIO), with the resultant materials having melting points (and/or glass transitions) which are significantly below ambient temperature. The new soft matter phase types discovered herein can be considered as electrical analogues of topological structures of magnetic spins in hard matter
    corecore