10 research outputs found

    Preferential binding of a G-quadruplex ligand to human chromosome ends

    Get PDF
    The G-overhangs of telomeres are thought to adopt particular conformations, such as T-loops or G-quadruplexes. It has been suggested that G-quadruplex structures could be stabilized by specific ligands in a new approach to cancer treatment consisting in inhibition of telomerase, an enzyme involved in telomere maintenance and cell immortality. Although the formation of G-quadruplexes was demonstrated in vitro many years ago, it has not been definitively demonstrated in living human cells. We therefore investigated the chromosomal binding of a tritiated G-quadruplex ligand, (3)H-360A (2,6-N,N′-methyl-quinolinio-3-yl)-pyridine dicarboxamide [methyl-(3)H]. We verified the in vitro selectivity of (3)H-360A for G-quadruplex structures by equilibrium dialysis. We then showed by binding experiments with human genomic DNA that (3)H-360A has a very potent selectivity toward G-quadruplex structures of the telomeric 3′-overhang. Finally, we performed autoradiography of metaphase spreads from cells cultured with (3)H-360A. We found that (3)H-360A was preferentially bound to chromosome terminal regions of both human normal (peripheral blood lymphocytes) and tumor cells (T98G and CEM1301). In conclusion, our results provide evidence that a specific G-quadruplex ligand interacts with the terminal ends of human chromosomes. They support the hypothesis that G-quadruplex ligands induce and/or stabilize G-quadruplex structures at telomeres of human cells

    Role of ATM in the telomere response to the G-quadruplex ligand 360A

    Get PDF
    Telomeres are known to prevent chromosome ends from being recognized as DNA double-strand breaks. Conversely, many DNA damage response proteins, including ATM, are thought to participate to telomere maintenance. However, the precise roles of ATM at telomeres remain unclear due to its multiple functions in cell checkpoints and apoptosis. To gain more insights into the role of ATM in telomere maintenance, we determined the effects of the G-quadruplex ligand 360A in various cell lines lacking functional ATM. We showed, by using Fluorescence in situ hybridization (FISH) and Chromosome Orientation-FISH using telomere PNA probes, that 360A induced specific telomere aberrations occurring during or after replication, mainly consisting in sister telomere fusions and also recombinations that involved preferentially the lagging strand telomeres. We demonstrate that ATM reduced telomere instability independently of apoptosis induction. Our results suggest thus that ATM has a direct role in preventing inappropriate DNA repair at telomeres, which could be related to its possible participation to the formation of protected structures at telomeres

    Validation of Radar propagation model: the PREDEM experiment

    No full text
    ISBN: 1-4244-123-2International audienc

    Une préfiguration des futures aides tactiques : le code PREDEM

    No full text
    National audienc

    Targeting human telomerase for cancer therapeutics

    No full text
    corecore