7 research outputs found

    Sparc : a central and online portal for research services

    No full text
    "Clinical and basic research studies require various research related services. For every research study, researchers need to go through a complex process for: receiving up to date pricing information for research services provided by the research centers and clinical departments; developing budget proposals; requesting services. In order to centralize the service catalog and pricing, MU School of Medicine has implemented a web application called SPARC (Pricing, Application for Research Centers), which was developed by the Medical University of South Carolina. SPARC also provides an administrative portal to manage service catalogs and pricing information, manage service requests and communicate with researchers."--Introduction

    Utility of Features in a Natural-Language-Processing-Based Clinical De-Identification Model Using Radiology Reports for Advanced NSCLC Patients

    No full text
    The de-identification of clinical reports is essential to protect the confidentiality of patients. The natural-language-processing-based named entity recognition (NER) model is a widely used technique of automatic clinical de-identification. The performance of such a machine learning model relies largely on the proper selection of features. The objective of this study was to investigate the utility of various features in a conditional-random-field (CRF)-based NER model. Natural language processing (NLP) toolkits were used to annotate the protected health information (PHI) from a total of 10,239 radiology reports that were divided into seven types. Multiple features were extracted by the toolkit and the NER models were built using these features and their combinations. A total of 10 features were extracted and the performance of the models was evaluated based on their precision, recall, and F1-score. The best-performing features were n-gram, prefix-suffix, word embedding, and word shape. These features outperformed others across all types of reports. The dataset we used was large in volume and divided into multiple types of reports. Such a diverse dataset made sure that the results were not subject to a small number of structured texts from where a machine learning model can easily learn the features. The manual de-identification of large-scale clinical reports is impractical. This study helps to identify the best-performing features for building an NER model for automatic de-identification from a wide array of features mentioned in the literature

    Utility of Features in a Natural-Language-Processing-Based Clinical De-Identification Model Using Radiology Reports for Advanced NSCLC Patients

    No full text
    The de-identification of clinical reports is essential to protect the confidentiality of patients. The natural-language-processing-based named entity recognition (NER) model is a widely used technique of automatic clinical de-identification. The performance of such a machine learning model relies largely on the proper selection of features. The objective of this study was to investigate the utility of various features in a conditional-random-field (CRF)-based NER model. Natural language processing (NLP) toolkits were used to annotate the protected health information (PHI) from a total of 10,239 radiology reports that were divided into seven types. Multiple features were extracted by the toolkit and the NER models were built using these features and their combinations. A total of 10 features were extracted and the performance of the models was evaluated based on their precision, recall, and F1-score. The best-performing features were n-gram, prefix-suffix, word embedding, and word shape. These features outperformed others across all types of reports. The dataset we used was large in volume and divided into multiple types of reports. Such a diverse dataset made sure that the results were not subject to a small number of structured texts from where a machine learning model can easily learn the features. The manual de-identification of large-scale clinical reports is impractical. This study helps to identify the best-performing features for building an NER model for automatic de-identification from a wide array of features mentioned in the literature
    corecore