1,720 research outputs found

    Marginalising instrument systematics in HST WFC3 transit lightcurves

    Get PDF
    Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) infrared observations at 1.1-1.7μ\mum probe primarily the H2_2O absorption band at 1.4μ\mum, and has provided low resolution transmission spectra for a wide range of exoplanets. We present the application of marginalisation based on Gibson (2014) to analyse exoplanet transit lightcurves obtained from HST WFC3, to better determine important transit parameters such as Rp_p/R_*, important for accurate detections of H2_2O. We approximate the evidence, often referred to as the marginal likelihood, for a grid of systematic models using the Akaike Information Criterion (AIC). We then calculate the evidence-based weight assigned to each systematic model and use the information from all tested models to calculate the final marginalised transit parameters for both the band-integrated, and spectroscopic lightcurves to construct the transmission spectrum. We find that a majority of the highest weight models contain a correction for a linear trend in time, as well as corrections related to HST orbital phase. We additionally test the dependence on the shift in spectral wavelength position over the course of the observations and find that spectroscopic wavelength shifts δλ(λ)\delta_\lambda(\lambda), best describe the associated systematic in the spectroscopic lightcurves for most targets, while fast scan rate observations of bright targets require an additional level of processing to produce a robust transmission spectrum. The use of marginalisation allows for transparent interpretation and understanding of the instrument and the impact of each systematic evaluated statistically for each dataset, expanding the ability to make true and comprehensive comparisons between exoplanet atmospheres.Comment: 19 pages, 13 figures, 8 tables, Accepted to Ap

    High Temperature Condensate Clouds in Super-Hot Jupiter Atmospheres

    Get PDF
    Deciphering the role of clouds is central to our understanding of exoplanet atmo- spheres, as they have a direct impact on the temperature and pressure structure, and observational properties of the planet. Super-hot Jupiters occupy a temperature regime similar to low mass M-dwarfs, where minimal cloud condensation is expected. However, observations of exoplanets such as WASP-12b (Teq∼2500 K) result in a transmission spectrum indicative of a cloudy atmosphere. We re-examine the temperature and pressure space occupied by these super-hot Jupiter atmospheres, to explore the role of the initial Al- and Ti-bearing condensates as the main source of cloud material. Due to the high temperatures a majority of the more common refractory material is not depleted into deeper layers and would remain in the vapor phase. The lack of depletion into deeper layers means that these materials with relatively low cloud masses can become significant absorbers in the upper atmosphere. We provide condensation curves for the initial Al- and Ti-bearing condensates that may be used to provide quantitative estimates of the effect of metallicity on cloud masses, as planets with metal-rich hosts potentially form more opaque clouds because more mass is available for condensation. Increased metallicity also pushes the point of condensation to hotter, deeper layers in the planetary atmosphere further increasing the density of the cloud. We suggest that planets around metal-rich hosts are more likely to have thick refractory clouds, and discuss the implication on the observed spectra of WASP-12b

    Living with ‘melanoma’…for a day: a phenomenological analysis of medical students’ simulated experiences

    Get PDF
    Background Despite the rising incidence of melanoma, medical students have progressively fewer opportunities to encounter patients with this important condition. Curricula tend to attach the greatest value to intellectual forms of learning. Compared to intellectual learning, however, experiential learning affords students deep insights about a condition. Doctors who experience ill health are more empathic towards patients. However opportunities to learn about cancer experientially are limited. Temporary transfer tattoos can simulate the ill health associated with melanoma. We reasoned that, if doctors who have been sick are more empathic, temporarily ‘having’ melanoma might have a similar effect. Objectives Explore the impact of wearing a melanoma tattoo on medical students’ understanding of patienthood and attitudes towards patients with melanoma. Methods Ten fourth year medical students were recruited to a simulation. They wore a melanoma tattoo for 24 hours and listened to a patient’s account of receiving their diagnosis. Data were captured using audio-diaries and face-to-face interviews, transcribed, and analysed phenomenologically using the template analysis method. Results There were four themes: 1) Melanoma simulation: opening up new experiences; 2) Drawing upon past experiences; 3) A transformative introduction to patienthood; 4) Doctors in the making: seeing cancer patients in a new light. Conclusions By means of a novel simulation, medical students were introduced to lived experiences of having a melanoma. Such an inexpensive simulation can prompt students to reflect critically on the empathetic care of such patients in the future

    Intravascular histiocytosis presenting with extensive vulvar necrosis

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73547/1/j.1600-0560.2008.01185.x.pd

    Flexible provisioning of Web service workflows

    No full text
    Web services promise to revolutionise the way computational resources and business processes are offered and invoked in open, distributed systems, such as the Internet. These services are described using machine-readable meta-data, which enables consumer applications to automatically discover and provision suitable services for their workflows at run-time. However, current approaches have typically assumed service descriptions are accurate and deterministic, and so have neglected to account for the fact that services in these open systems are inherently unreliable and uncertain. Specifically, network failures, software bugs and competition for services may regularly lead to execution delays or even service failures. To address this problem, the process of provisioning services needs to be performed in a more flexible manner than has so far been considered, in order to proactively deal with failures and to recover workflows that have partially failed. To this end, we devise and present a heuristic strategy that varies the provisioning of services according to their predicted performance. Using simulation, we then benchmark our algorithm and show that it leads to a 700% improvement in average utility, while successfully completing up to eight times as many workflows as approaches that do not consider service failures

    Particle Creation If a Cosmic String Snaps

    Get PDF
    We calculate the Bogolubov coefficients for a metric which describes the snapping of a cosmic string. If we insist on a matching condition for all times {\it and} a particle interpretation, we find no particle creation.Comment: 10 pages, MRC.PH.17/9

    HST PanCET program: A Cloudy Atmosphere for the promising JWST target WASP-101b

    Get PDF
    We present results from the first observations of the Hubble Space Telescope (HST) Panchromatic Comparative Exoplanet Treasury (PanCET) program for WASP-101b, a highly inflated hot Jupiter and one of the community targets proposed for the James Webb Space Telescope (JWST) Early Release Science (ERS) program. From a single HST Wide Field Camera 3 (WFC3) observation, we find that the near-infrared transmission spectrum of WASP-101b contains no significant H2_2O absorption features and we rule out a clear atmosphere at 13{\sigma}. Therefore, WASP-101b is not an optimum target for a JWST ERS program aimed at observing strong molecular transmission features. We compare WASP-101b to the well studied and nearly identical hot Jupiter WASP-31b. These twin planets show similar temperature-pressure profiles and atmospheric features in the near-infrared. We suggest exoplanets in the same parameter space as WASP-101b and WASP-31b will also exhibit cloudy transmission spectral features. For future HST exoplanet studies, our analysis also suggests that a lower count limit needs to be exceeded per pixel on the detector in order to avoid unwanted instrumental systematics.Comment: 7 pages, 4 figures, 1 table, Accepted to ApJ

    The Roman exoplanet Imaging data challenge: a major community engagement effort

    Get PDF
    Organized by the Turnbull Science Investigation Team (SIT), the 2019-2020 Roman Exoplanet Imaging Data Challenge (EIDC) launched in mid October 2019 and ran for eight months. This data challenge was a unique opportunity for exoplanet scientists of all backgrounds and experience levels to get acquainted with realistic Roman CGI (coronagraphic) simulated data with a new contrast regimes at 10-8 to 10-9 enabling to unveil planets down to the Neptune-mass in reflected light. Participating teams had to recover the astrometry of an exoplanetary system combining precursor radial velocity data (also simulated across 15 years) with two to six coronagraphic imaging epochs (HLC and Star Shade). They had to perform accurate orbital fitting and determine the mass of any planet hidden in the data. It involved PSF subtraction techniques, post-processing and other astrophysics hurdles to overcome such as contamination sources (stellar, extragalactic and exozodiacal light). We organized four tutorial "hack-a-thon" events to get as many people on-board. The EIDC proved to be an excellent way to engage with the intricacies of the first mission to perform wavefront control in space, as a pathfinder to future flagship missions. It also generated a lot of positive interactions between open source package owners and a whole new set of young exoplanet scientists running them. As a community we are a few steps closer to being ready to analyze real CGI data

    Making sense of nanocrystal lattice fringes

    Get PDF
    The orientation-dependence of thin-crystal lattice fringes can be gracefully quantified using fringe-visibility maps, a direct-space analog of Kikuchi maps. As in navigation of reciprocal space with the aid of Kikuchi lines, fringe-visibility maps facilitate acquisition of 3D crystallographic information in lattice images. In particular, these maps can help researchers to determine the 3D lattice parameters of individual nano-crystals, to ``fringe fingerprint'' collections of randomly-oriented particles, and to measure local specimen-thickness with only modest tilt. Since the number of fringes in an image increases with maximum spatial-frequency squared, these strategies (with help from more precise goniometers) will be more useful as aberration-correction moves resolutions into the subangstrom range.Comment: 12 pages, 15 figures, 2 tables, 60 refs, RevTex4, notes http://www.umsl.edu/~fraundor/help/imagnxtl.ht
    corecore