32 research outputs found

    Alternative splicing of barley clock genes in response to low temperature:evidence for alternative splicing conservation

    Get PDF
    Alternative splicing (AS) is a regulated mechanism that generates multiple transcripts from individual genes. It is widespread in eukaryotic genomes and provides an effective way to control gene expression. At low temperatures, AS regulates Arabidopsis clock genes through dynamic changes in the levels of productive mRNAs. We examined AS in barley clock genes to assess whether temperature-dependent AS responses also occur in a monocotyledonous crop species. We identify changes in AS of various barley core clock genes including the barley orthologues of Arabidopsis AtLHY and AtPRR7 which showed the most pronounced AS changes in response to low temperature. The AS events modulate the levels of functional and translatable mRNAs, and potentially protein levels, upon transition to cold. There is some conservation of AS events and/or splicing behaviour of clock genes between Arabidopsis and barley. In addition, novel temperature-dependent AS of the core clock gene HvPPD-H1 (a major determinant of photoperiod response and AtPRR7 orthologue) is conserved in monocots. HvPPD-H1 showed a rapid, temperature-sensitive isoform switch which resulted in changes in abundance of AS variants encoding different protein isoforms. This novel layer of low temperature control of clock gene expression, observed in two very different species, will help our understanding of plant adaptation to different environments and ultimately offer a new range of targets for plant improvement

    Functional Dissection of Sugar Signals Affecting Gene Expression in Arabidopsis thaliana

    No full text
    Background: Sugars modulate expression of hundreds of genes in plants. Previous studies on sugar signaling, using intact plants or plant tissues, were hampered by tissue heterogeneity, uneven sugar transport and/or inter-conversions of the applied sugars. This, in turn, could obscure the identity of a specific sugar that acts as a signal affecting expression of given gene in a given tissue or cell-type. Methodology/Principal Findings: To bypass those biases, we have developed a novel biological system, based on stem-cell-like Arabidopsis suspension culture. The cells were grown in a hormone-free medium and were sustained on xylose as the only carbon source. Using functional genomics we have identified 290 sugar responsive genes, responding rapidly (within 1 h) and specifically to low concentration (1 mM) of glucose, fructose and/or sucrose. For selected genes, the true nature of the signaling sugar molecules and sites of sugar perception were further clarified using non-metabolizable sugar analogues. Using both transgenic and wild-type A. thaliana seedlings, it was shown that the expression of selected sugar-responsive genes was not restricted to a specific tissue or cell type and responded to photoperiod-related changes in sugar availability. This suggested that sugar-responsiveness of genes identified in the cell culture system was not biased toward heterotrophic background and resembled that in whole plants. Conclusions: Altogether, our research strategy, using a combination of cell culture and whole plants, has provided an unequivocal evidence for the identity of sugar-responsive genes and the identity of the sugar signaling molecules, independently from their inter-conversions or use for energy metabolism

    <it>In vivo </it>induction of phase II detoxifying enzymes, glutathione transferase and quinone reductase by citrus triterpenoids

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several cell culture and animal studies demonstrated that citrus bioactive compounds have protective effects against certain types of cancer. Among several classes of citrus bioactive compounds, limonoids were reported to prevent different types of cancer. Furthermore, the structures of citrus limonoids were reported to influence the activity of phase II detoxifying enzymes. The purpose of the study was to evaluate how variations in the structures of citrus limonoids (namely nomilin, deacetyl nomilin, and isoobacunoic acid) and a mixture of limonoids would influence phase II enzyme activity in excised tissues from a mouse model.</p> <p>Methods</p> <p>In the current study, defatted sour orange seed powder was extracted with ethyl acetate and subjected to silica gel chromatography. The HPLC, NMR and mass spectra were used to elucidate the purity and structure of compounds. Female A/J mice were treated with three limonoids and a mixture in order to evaluate their effect on phase II enzymes in four different tissues. Assays for glutathione S-transferase and NAD(P)H: quinone reductase (QR) were used to evaluate induction of phase II enzymatic activity.</p> <p>Results</p> <p>The highest induction of GST against 1-chloro-2,4-dinitrobenzene (CDNB) was observed in stomach (whole), 58% by nomilin, followed by 25% isoobacunoic acid and 19% deacetyl nomilin. Deacetyl nomilin in intestine (small) as well as liver significantly reduced GST activity against CDNB. Additionally isoobacunoic acid and the limonoid mixture in liver demonstrated a significant reduction of GST activity against CDNB. Nomilin significantly induced GST activity against 4-nitroquinoline 1-oxide (4NQO), intestine (280%) and stomach (75%) while deacetyl nomilin showed significant induction only in intestine (73%). Induction of GST activity was also observed in intestine (93%) and stomach (45%) treated with the limonoid mixture. Finally, a significant induction of NAD(P)H: quinone reductase (QR) activity was observed by the limonoid mixture in stomach (200%). In addition, the deacetyl nomilin treatment group displayed an increase in QR activity in liver (183%) and intestine (22%).</p> <p>Conclusion</p> <p>The results of the present study suggests that, dietary intake of citrus limonoids may provide a protective effect against the onset of various cancers by inducing the activity of certain phase II detoxifying enzymes in specific organs.</p

    NIK1-mediated translation suppression functions as a plant antiviral immunity mechanism

    No full text
    Plants and plant pathogens are subject to continuous co-evolutionary pressure for dominance, and the outcomes of these interactions can substantially impact agriculture and food security(1–3). In virus– plant interactions, one of the major mechanisms for plant antiviral immunity relies on RNA silencing, which is often suppressed by co-evolving virus suppressors, thus enhancing viral pathogenicity in susceptible hosts(1). In addition, plants use the nucleotide-binding and leucine-rich repeat (NB-LRR) domain-containing resistance proteins, which recognize viral effectors to activate effector-triggered immunity in a defence mechanism similar to that employed in non-viral infections(2,3). Unlike most eukaryotic organisms, plants are not known to activate mechanisms of host global translation suppression to fight viruses(1,2). Here we demonstrate in Arabidopsis that the constitutive activation of NIK1, a leucine-rich repeat receptor-like kinase (LRR-RLK) identified as a virulence target of the begomovirus nuclear shuttle protein (NSP)(4–6), leads to global translation suppression and translocation of the downstream component RPL10 to the nucleus, where it interacts with a newly identified MYB-like protein, L10-INTERACTING MYB DOMAIN-CONTAINING PROTEIN (LIMYB), to downregulate translational machinery genes fully. LIMYB overexpression represses ribosomal protein genes at the transcriptional level, resulting in protein synthesis inhibition, decreased viral messenger RNA association with polysome fractions and enhanced tolerance to begomovirus. By contrast, the loss of LIMYB function releases the repression of translation-related genes and increases susceptibility to virus infection. Therefore, LIMYB links immune receptor LRR-RLK activation to global translation suppression as an antiviral immunity strategy in plants
    corecore