70 research outputs found

    Development and In Vivo Evaluation of Multidrug Ultradeformable Vesicles for the Treatment of Skin Inflammation

    Get PDF
    The aim of this work was to evaluate the effect of two chemically different edge activators, i.e., TweenÂź 80 and sodium deoxycholate, on (i) the physical, mechanical, and biological properties of ultradeformable vesicles, and (ii) the administration of naproxen sodium-loaded multidrug ultradeformable vesicles for the transdermal route in order to obtain therapeutically meaningful drug concentrations in the target tissues and to potentiate its anti-inflammatory effect by association with the antioxidant drug idebenone. The results obtained in this investigation highlighted a synergistic action between naproxen and idebenone in the treatment of inflammatory disease with a more pronounced anti-inflammatory effect in multidrug ultradeformable vesicles compared to the commercial formulation of NaprosynÂź gel. Systems made up of TweenÂź 80 appeared to be the most suitable in terms of percutaneous permeation and anti-inflammatory activity due to the greater deformability of these vesicles compared to multidrug ultradeformable vesicles with sodium deoxycholate. Our findings are very encouraging and suggest the use of these carriers in the topical treatment of inflammatory diseases

    Oleuropein-Laded Ufasomes Improve the Nutraceutical Efficacy

    Get PDF
    Ufasomes are unsaturated fatty acid liposomes made up of oleic and linoleic acids, natural components required in various biological processes. This kind of nanocarrier is characterized by a simple and dynamic structure and is able to improve the bioavailability of unsaturated fatty acids. The aim of this investigation was to evaluate ufasomes as natural compound delivery systems to deliver oleuropein and improve its antioxidant activity. Oleuropein is a phenolic compound mainly present in olives and olive oil, with several biological properties, such as the antioxidant activity. However, to improve their biological activity, antioxidant compounds should be able to cross cell membranes and uniformly incorporate in cells. Because of the great similarity between their constituents and cell membranes, ufasomes could be advantageous carriers for oleuropein delivery. The physico-chemical characteristics of ufasomes were investigated. A regular shape was shown by transmission electron microscopy studies, while the mean sizes were dependent on the ufasomes composition. In vitro studies highlighted that empty ufasomes did not lead to cell mortality at the tested concentrations and a good carrier internalization in CaCo-2 cells, further studies in vitro studies demonstrated that oleuropein-loaded ufasomes were able to enhance the antioxidant activity of the free active substance making this carrier a suitable one for nutraceutical application

    Lack of Association between Nuclear Factor ErythroidDerived 2-Like 2

    Get PDF
    Oxidative stress involvement has been strongly hypothesized among the possible pathogenic mechanisms of motor neuron degeneration in amyotrophic lateral sclerosis (ALS). The intracellular redox balance is finely modulated by numerous complex mechanisms critical for cellular functions, among which the nuclear factor erythroid-derived 2-like 2 (NFE2L2/Nrf2) pathways. We genotyped, in a cohort of ALS patients ( = 145) and healthy controls ( = 168), three SNPs in Nrf2 gene promoter: −653 A/G, −651 G/A, and −617 C/A and evaluated, in a subset ( = 73) of patients, advanced oxidation protein products (AOPP), ironreducing ability of plasma (FRAP), and plasma thiols (-SH) as oxidative damage peripheral biomarkers. Nrf2 polymorphisms were not different among patients and controls. Increased levels of AOPP ( < 0.05) and decreased levels of FRAP ( < 0.001) have been observed in ALS patients compared with controls, but no difference in -SH values was found. Furthermore, no association was found between biochemical markers of redox balance and Nrf2 polymorphisms. These data confirm an altered redox balance in ALS and indicate that, while being abnormally modified compared to controls, the oxidative stress biomarkers assessed in this study are independent from the −65

    Phylogeography and genomic epidemiology of SARS-CoV-2 in Italy and Europe with newly characterized Italian genomes between February-June 2020

    Get PDF

    Role of DNA methylation in head and neck cancer

    Get PDF
    Head and neck cancer (HNC) is a heterogenous and complex entity including diverse anatomical sites and a variety of tumor types displaying unique characteristics and different etilogies. Both environmental and genetic factors play a role in the development of the disease, but the underlying mechanism is still far from clear. Previous studies suggest that alterations in the genes acting in cellular signal pathways may contribute to head and neck carcinogenesis. In cancer, DNA methylation patterns display specific aberrations even in the early and precancerous stages and may confer susceptibility to further genetic or epigenetic changes. Silencing of the genes by hypermethylation or induction of oncogenes by promoter hypomethylation are frequent mechanisms in different types of cancer and achieve increasing diagnostic and therapeutic importance since the changes are reversible. Therefore, methylation analysis may provide promising clinical applications, including the development of new biomarkers and prediction of the therapeutic response or prognosis. In this review, we aimed to analyze the available information indicating a role for the epigenetic changes in HNC

    Unpublished Mediterranean and Black Sea records of marine alien, cryptogenic, and neonative species

    Get PDF
    To enrich spatio-temporal information on the distribution of alien, cryptogenic, and neonative species in the Mediterranean and the Black Sea, a collective effort by 173 marine scientists was made to provide unpublished records and make them open access to the scientific community. Through this effort, we collected and harmonized a dataset of 12,649 records. It includes 247 taxa, of which 217 are Animalia, 25 Plantae and 5 Chromista, from 23 countries surrounding the Mediterranean and the Black Sea. Chordata was the most abundant taxonomic group, followed by Arthropoda, Mollusca, and Annelida. In terms of species records, Siganus luridus, Siganus rivulatus, Saurida lessepsianus, Pterois miles, Upeneus moluccensis, Charybdis (Archias) longicollis, and Caulerpa cylindracea were the most numerous. The temporal distribution of the records ranges from 1973 to 2022, with 44% of the records in 2020–2021. Lethrinus borbonicus is reported for the first time in the Mediterranean Sea, while Pomatoschistus quagga, Caulerpa cylindracea, Grateloupia turuturu, and Misophria pallida are first records for the Black Sea; Kapraunia schneideri is recorded for the second time in the Mediterranean and for the first time in Israel; Prionospio depauperata and Pseudonereis anomala are reported for the first time from the Sea of Marmara. Many first country records are also included, namely: Amathia verticillata (Montenegro), Ampithoe valida (Italy), Antithamnion amphigeneum (Greece), Clavelina oblonga (Tunisia and Slovenia), Dendostrea cf. folium (Syria), Epinephelus fasciatus (Tunisia), Ganonema farinosum (Montenegro), Macrorhynchia philippina (Tunisia), Marenzelleria neglecta (Romania), Paratapes textilis (Tunisia), and Botrylloides diegensis (Tunisia).peer-reviewe

    A novel Alzheimer disease locus located near the gene encoding tau protein

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordAPOE Δ4, the most significant genetic risk factor for Alzheimer disease (AD), may mask effects of other loci. We re-analyzed genome-wide association study (GWAS) data from the International Genomics of Alzheimer's Project (IGAP) Consortium in APOE Δ4+ (10 352 cases and 9207 controls) and APOE Δ4- (7184 cases and 26 968 controls) subgroups as well as in the total sample testing for interaction between a single-nucleotide polymorphism (SNP) and APOE Δ4 status. Suggestive associations (P<1 × 10-4) in stage 1 were evaluated in an independent sample (stage 2) containing 4203 subjects (APOE Δ4+: 1250 cases and 536 controls; APOE Δ4-: 718 cases and 1699 controls). Among APOE Δ4- subjects, novel genome-wide significant (GWS) association was observed with 17 SNPs (all between KANSL1 and LRRC37A on chromosome 17 near MAPT) in a meta-analysis of the stage 1 and stage 2 data sets (best SNP, rs2732703, P=5·8 × 10-9). Conditional analysis revealed that rs2732703 accounted for association signals in the entire 100-kilobase region that includes MAPT. Except for previously identified AD loci showing stronger association in APOE Δ4+ subjects (CR1 and CLU) or APOE Δ4- subjects (MS4A6A/MS4A4A/MS4A6E), no other SNPs were significantly associated with AD in a specific APOE genotype subgroup. In addition, the finding in the stage 1 sample that AD risk is significantly influenced by the interaction of APOE with rs1595014 in TMEM106B (P=1·6 × 10-7) is noteworthy, because TMEM106B variants have previously been associated with risk of frontotemporal dementia. Expression quantitative trait locus analysis revealed that rs113986870, one of the GWS SNPs near rs2732703, is significantly associated with four KANSL1 probes that target transcription of the first translated exon and an untranslated exon in hippocampus (P≀1.3 × 10-8), frontal cortex (P≀1.3 × 10-9) and temporal cortex (P≀1.2 × 10-11). Rs113986870 is also strongly associated with a MAPT probe that targets transcription of alternatively spliced exon 3 in frontal cortex (P=9.2 × 10-6) and temporal cortex (P=2.6 × 10-6). Our APOE-stratified GWAS is the first to show GWS association for AD with SNPs in the chromosome 17q21.31 region. Replication of this finding in independent samples is needed to verify that SNPs in this region have significantly stronger effects on AD risk in persons lacking APOE Δ4 compared with persons carrying this allele, and if this is found to hold, further examination of this region and studies aimed at deciphering the mechanism(s) are warranted

    Cardiac Stem Cell-Loaded Delivery Systems: A New Challenge for Myocardial Tissue Regeneration

    No full text
    Cardiovascular disease (CVD) remains the leading cause of death in Western countries. Post-myocardial infarction heart failure can be considered a degenerative disease where myocyte loss outweighs any regenerative potential. In this scenario, regenerative biology and tissue engineering can provide effective solutions to repair the infarcted failing heart. The main strategies involve the use of stem and progenitor cells to regenerate/repair lost and dysfunctional tissue, administrated as a suspension or encapsulated in specific delivery systems. Several studies demonstrated that effectiveness of direct injection of cardiac stem cells (CSCs) is limited in humans by the hostile cardiac microenvironment and poor cell engraftment; therefore, the use of injectable hydrogel or pre-formed patches have been strongly advocated to obtain a better integration between delivered stem cells and host myocardial tissue. Several approaches were used to refine these types of constructs, trying to obtain an optimized functional scaffold. Despite the promising features of these stem cells&rsquo; delivery systems, few have reached the clinical practice. In this review, we summarize the advantages, and the novelty but also the current limitations of engineered patches and injectable hydrogels for tissue regenerative purposes, offering a perspective of how we believe tissue engineering should evolve to obtain the optimal delivery system applicable to the everyday clinical scenario

    Positively Charged Lipid as Potential Tool to Influence the Fate of Ethosomes

    No full text
    EthosomesÂź are one of the main deformable vesicles proposed to overcome the stratum corneum. They are composed of lecithin, ethanol and water, resulting in round vesicles characterized by a narrow size distribution and a negative surface charge. Taking into account their efficiency to deliver drugs into deeper skin layers, the current study was designed to evaluate the influence of different lipids on the physico-chemical features of traditional ethosomes in the attempt to influence their fate. Three lipids (DOPE, DSPE and DOTAP) were used for the study, but only DOTAP conferred a net positive charge to ethosomes, maintaining a narrow mean size lower than 300 nm and a good polydispersity index. Stability and in vitro cytotoxic studies have been performed using Turbiscan Lab analysis and MTT dye exclusion assay, respectively. Data recorded demonstrated the good stability of modified ethosomes and a reasonable absence of cell mortality when applied to human keratinocytes, NCTC 2544, which are used as a cell model. Finally, the best formulations were selected to evaluate their ability to encapsulate drugs, through the use of model compounds. Cationic ethosomes encapsulated oil red o and rhodamine b in amounts comparable to those recorded from conventional ethosomes (over 50%). Results recorded from this study are encouraging as cationic ethosomes may open new opportunities for skin delivery

    La ginecomastia idiopatica: nostra esperienza

    Get PDF
    utori, nel riportare i dati della loro esperienza, citano le differenze nella fisiologica evoluzione della mammella sia nella donna sia nell'uomo. Dopo aver puntualizzato come sia importante distinguere tra ginecomastia vera e pseudoginecomastia, si soffermano sulle molteplici cause che possono ricondurre ad un abnorme sviluppo della mammel - la maschile e sulle caratteristiche anatomo-patologiche della gineco - mastia idiopatica. Pongono quindi l'accento sulla necessitĂ  che solo una diagnosi ben circonstanziata possa consentire una corretta scelta terapeutica e concludono affermando come l'opzione tra chirurgia tradizionale o tecniche di liposuzione debba essere posta solo in virtĂč della prevalen - za della componente ghiandolare o di quella adiposa
    • 

    corecore