3 research outputs found

    Real-time monitoring of fenitrothion in water samples using a silicon nanophotonic biosensor

    Get PDF
    [EN] Due to the large quantities of pesticides extensively used and their impact on the environment and human health, a prompt and reliable sensing technique could constitute an excellent tool for in-situ monitoring. With this aim, we have applied a highly sensitive photonic biosensor based on a bimodal waveguide interferometer (BiMW) for the rapid, label-free, and speci¿c quanti¿cation of fenitrothion (FN) directly in tap water samples. After an optimization protocol, the biosensor achieved a limit of detection (LOD) of 0.29 ng mL¿¿1 (1.05 nM) and a half-maximal inhibitory concentration (IC50)of 1.71 ng mL¿¿1 (6.09 nM) using a competitive immunoassay and employing diluted tap water. Moreover, the biosensor was successfully employed to determine FN concentration in blind tap water samples obtaining excellent recovery percentages with a time-to-result of only 20 min without any sample pre-treatment. The features of the biosensor suggest its potential application for real time, fast and sensitive screening of FN in water samples as an analytical tool for the monitoring of the water quality.This work received financial support from DIONISOS Project (Retos Colaboracion RTC-2017-6222-5). The ICN2 is funded by the CERCA programme/Generalitat de Catalunya. The ICN2 is supported by the Severo Ochoa Centres of Excellence programme, funded by the Spanish Research Agency (AEI, grant no. SEV-2017-0706)Ramirez-Priego, P.; Estévez, M.; Díaz-Luisravelo, HJ.; Manclus Ciscar, JJ.; Montoya, Á.; Lechuga, LM. (2021). Real-time monitoring of fenitrothion in water samples using a silicon nanophotonic biosensor. Analytica Chimica Acta. 1152:1-9. https://doi.org/10.1016/j.aca.2021.338276S191152Sánchez-Santed, F., Colomina, M. T., & Herrero Hernández, E. (2016). Organophosphate pesticide exposure and neurodegeneration. Cortex, 74, 417-426. doi:10.1016/j.cortex.2015.10.003Chough, S. H., Mulchandani, A., Mulchandani, P., Chen, W., Wang, J., & Rogers, K. R. (2002). Organophosphorus Hydrolase-Based Amperometric Sensor: Modulation of Sensitivity and Substrate Selectivity. Electroanalysis, 14(4), 273-276. doi:10.1002/1521-4109(200202)14:43.0.co;2-5Richardson, J. R., Fitsanakis, V., Westerink, R. H. S., & Kanthasamy, A. G. (2019). Neurotoxicity of pesticides. Acta Neuropathologica, 138(3), 343-362. doi:10.1007/s00401-019-02033-9Giordano, G., Afsharinejad, Z., Guizzetti, M., Vitalone, A., Kavanagh, T. J., & Costa, L. G. (2007). Organophosphorus insecticides chlorpyrifos and diazinon and oxidative stress in neuronal cells in a genetic model of glutathione deficiency. Toxicology and Applied Pharmacology, 219(2-3), 181-189. doi:10.1016/j.taap.2006.09.016Çakir, Ş., & Sarikaya, R. (2005). Genotoxicity testing of some organophosphate insecticides in the Drosophila wing spot test. Food and Chemical Toxicology, 43(3), 443-450. doi:10.1016/j.fct.2004.11.010Rahman, M. F., Mahboob, M., Danadevi, K., Saleha Banu, B., & Grover, P. (2002). Assessment of genotoxic effects of chloropyriphos and acephate by the comet assay in mice leucocytes. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 516(1-2), 139-147. doi:10.1016/s1383-5718(02)00033-5Yeh, S.-P., Sung, T.-G., Chang, C.-C., Cheng, W., & Kuo, C.-M. (2005). Effects of an organophosphorus insecticide, trichlorfon, on hematological parameters of the giant freshwater prawn, Macrobrachium rosenbergii (de Man). Aquaculture, 243(1-4), 383-392. doi:10.1016/j.aquaculture.2004.10.017Smith, A. G., & Gangolli, S. D. (2002). Organochlorine chemicals in seafood: occurrence and health concerns. Food and Chemical Toxicology, 40(6), 767-779. doi:10.1016/s0278-6915(02)00046-7Kumar, P., Kim, K.-H., & Deep, A. (2015). Recent advancements in sensing techniques based on functional materials for organophosphate pesticides. Biosensors and Bioelectronics, 70, 469-481. doi:10.1016/j.bios.2015.03.066Schellin, M., Hauser, B., & Popp, P. (2004). Determination of organophosphorus pesticides using membrane-assisted solvent extraction combined with large volume injection–gas chromatography–mass spectrometric detection. Journal of Chromatography A, 1040(2), 251-258. doi:10.1016/j.chroma.2004.04.006Sánchez, M. E., Méndez, R., Gómez, X., & Martín‐Villacorta, J. (2003). Determination of Diazinon and Fenitrothion in Environmental Water and Soil Samples by HPLC. Journal of Liquid Chromatography & Related Technologies, 26(3), 483-497. doi:10.1081/jlc-120017184Sherma, J. (1993). Pesticides. Analytical Chemistry, 65(12), 40-54. doi:10.1021/ac00060a004Grigoryan, H., Li, B., Xue, W., Grigoryan, M., Schopfer, L. M., & Lockridge, O. (2009). Mass spectral characterization of organophosphate-labeled lysine in peptides. Analytical Biochemistry, 394(1), 92-100. doi:10.1016/j.ab.2009.07.008Thompson, C. M., Prins, J. M., & George, K. M. (2010). Mass Spectrometric Analyses of Organophosphate Insecticide Oxon Protein Adducts. Environmental Health Perspectives, 118(1), 11-19. doi:10.1289/ehp.0900824Wang, J., Chatrathi, M. P., Mulchandani, A., & Chen, W. (2001). Capillary Electrophoresis Microchips for Separation and Detection of Organophosphate Nerve Agents. Analytical Chemistry, 73(8), 1804-1808. doi:10.1021/ac001424eWatanabe, E., Kanzaki, Y., Tokumoto, H., Hoshino, R., Kubo, H., & Nakazawa, H. (2001). Enzyme-Linked Immunosorbent Assay Based on a Polyclonal Antibody for the Detection of the Insecticide Fenitrothion. Evaluation of Antiserum and Application to the Analysis of Water Samples. Journal of Agricultural and Food Chemistry, 50(1), 53-58. doi:10.1021/jf0108359Hua, X., Yang, J., Wang, L., Fang, Q., Zhang, G., & Liu, F. (2012). Development of an Enzyme Linked Immunosorbent Assay and an Immunochromatographic Assay for Detection of Organophosphorus Pesticides in Different Agricultural Products. PLoS ONE, 7(12), e53099. doi:10.1371/journal.pone.0053099Liu, G., & Lin, Y. (2005). Electrochemical Sensor for Organophosphate Pesticides and Nerve Agents Using Zirconia Nanoparticles as Selective Sorbents. Analytical Chemistry, 77(18), 5894-5901. doi:10.1021/ac050791tMane, P. C., Shinde, M. D., Varma, S., Chaudhari, B. P., Fatehmulla, A., Shahabuddin, M., … Chaudhari, R. D. (2020). Highly sensitive label-free bio-interfacial colorimetric sensor based on silk fibroin-gold nanocomposite for facile detection of chlorpyrifos pesticide. Scientific Reports, 10(1). doi:10.1038/s41598-020-61130-yEnsafi, A. A., Rezaloo, F., & Rezaei, B. (2017). Electrochemical Determination of Fenitrothion Organophosphorus Pesticide Using Polyzincon Modified-glassy Carbon Electrode. Electroanalysis, 29(12), 2839-2846. doi:10.1002/elan.201700406Qi, P., Wang, J., Wang, X., Wang, X., Wang, Z., Xu, H., … Wang, X. (2018). Sensitive determination of fenitrothion in water samples based on an electrochemical sensor layered reduced graphene oxide, molybdenum sulfide (MoS2)-Au and zirconia films. Electrochimica Acta, 292, 667-675. doi:10.1016/j.electacta.2018.09.187Kant, R. (2019). Surface plasmon resonance based fiber–optic nanosensor for the pesticide fenitrothion utilizing Ta2O5 nanostructures sequestered onto a reduced graphene oxide matrix. Microchimica Acta, 187(1). doi:10.1007/s00604-019-4002-8Zinoviev, K. E., Gonzalez-Guerrero, A. B., Dominguez, C., & Lechuga, L. M. (2011). Integrated Bimodal Waveguide Interferometric Biosensor for Label-Free Analysis. Journal of Lightwave Technology, 29(13), 1926-1930. doi:10.1109/jlt.2011.2150734Fernández Gavela, A., Grajales García, D., Ramirez, J., & Lechuga, L. (2016). Last Advances in Silicon-Based Optical Biosensors. Sensors, 16(3), 285. doi:10.3390/s16030285Maldonado, J., Estévez, M.-C., Fernández-Gavela, A., González-López, J. J., González-Guerrero, A. B., & Lechuga, L. M. (2020). Label-free detection of nosocomial bacteria using a nanophotonic interferometric biosensor. The Analyst, 145(2), 497-506. doi:10.1039/c9an01485cHuertas, C. S., Fariña, D., & Lechuga, L. M. (2016). Direct and Label-Free Quantification of Micro-RNA-181a at Attomolar Level in Complex Media Using a Nanophotonic Biosensor. ACS Sensors, 1(6), 748-756. doi:10.1021/acssensors.6b00162Maldonado, J., González-Guerrero, A. B., Domínguez, C., & Lechuga, L. M. (2016). Label-free bimodal waveguide immunosensor for rapid diagnosis of bacterial infections in cirrhotic patients. Biosensors and Bioelectronics, 85, 310-316. doi:10.1016/j.bios.2016.04.095González-Guerrero, A. B., Maldonado, J., Dante, S., Grajales, D., & Lechuga, L. M. (2016). Direct and label-free detection of the human growth hormone in urine by an ultrasensitive bimodal waveguide biosensor. Journal of Biophotonics, 10(1), 61-67. doi:10.1002/jbio.201600154Chocarro-Ruiz, B., Herranz, S., Fernández Gavela, A., Sanchís, J., Farré, M., Marco, M. P., & Lechuga, L. M. (2018). Interferometric nanoimmunosensor for label-free and real-time monitoring of Irgarol 1051 in seawater. Biosensors and Bioelectronics, 117, 47-52. doi:10.1016/j.bios.2018.05.044Chocarro-Ruiz, B., Pérez-Carvajal, J., Avci, C., Calvo-Lozano, O., Alonso, M. I., Maspoch, D., & Lechuga, L. M. (2018). A CO2optical sensor based on self-assembled metal–organic framework nanoparticles. Journal of Materials Chemistry A, 6(27), 13171-13177. doi:10.1039/c8ta02767fManclús, J. J., Primo, J., & Montoya, A. (1996). Development of Enzyme-Linked Immunosorbent Assays for the Insecticide Chlorpyrifos. 1. Monoclonal Antibody Production and Immunoassay Design. Journal of Agricultural and Food Chemistry, 44(12), 4052-4062. doi:10.1021/jf960144qDante, S., Duval, D., Fariña, D., González-Guerrero, A. B., & Lechuga, L. M. (2015). Linear readout of integrated interferometric biosensors using a periodic wavelength modulation. Laser & Photonics Reviews, 9(2), 248-255. doi:10.1002/lpor.20140021

    Miocene evolution of the External Rif Zone (Morocco): comparison with similar and lateral southern Mediterranean Tethyan margins

    Get PDF
    The Miocene evolution of the External Rif Zone (NW Africa Plate) was determined through the multidisciplinary analysis of fourteen successions. The updated stratigraphic framework shows how Miocene sediments rest on the Cretaceous–Paleogene terrains through unconformity surfaces, whereas it rests with sedimentary continuity in two sectors. After recognition of lithofacies and three unconformities located near the Oligocene–Aquitanian, Aquitanian–Burdigalian and Serravallian–Tortonian boundaries, the Miocene sedimentary record was divided into three stratigraphic intervals representing deep to shallow marine deposits as Aquitanian–Burdigalian, Langhian and Upper Serravallian–Missinian. The two oldest unconformites are restricted to the central sector, while the upper one is generalized and probably related to the nappe tectonics registered in all sectors of the External Rif. Data from analysis of tectofacies, petrology, mineralogy, meaning and implications of unconformities, and subsidence indicate that: (i) mass flow deposits (turbidites, slumps, olistostromes) are common in all successions but more frequent during the Lower Miocene; (ii) petrology of the detrital components of the arenites indicates recycled orogen-derived sediments, with quartz coming from erosion of metamorphic rocks of the Atlas orogen and/or the African craton; (iii) mineralogy of mudstones suggests a complex erosional evolution of local emerged areas derived from a mixture of contributions coming from the erosion of Upper Jurassic to Paleogene suites, and especially from kaolinite-rich Albian–Cenomanian to Paleogene successions with absence of a clear unroofing. The conjunction of all these clues reinforce the idea of a synsedimentary tectonics affecting the margin/basin system during the Miocene. A thickness analysis of the studied sedimentary successions allows proposing the evolution of the orogenic front and main depozones (foredeep, bulges, wedge-top and intramontane sub-basins) integrated in a complex foreland system migrating from north to south with the Atlas-Mesetas area acting as foreland during MIocene. The orogenic front moved from the Internal Intrarif to Mesorif and later to Internal Prerif. The main wedge-top basin also migrated from the Internal Intrarif to External Intrarif. The foredeep migrated from the Mesorif to the Internal Prerif, while the main forebulge was located in the External Prerif and a asecondary bulge developed in the External Intrarif. Intramontane basins developed behind the orogenic front in relative extensional conditions moving from the Internal Extrarif to External Intrarif. The reconstructed Miocene evolution was inserted into a 2D paleogeographic-geodynamic evolutionary model using Gplates software, and then compared to those reported in other external margins of the western Tethys (Betic Chain, Tunisian Tell, Sicilian Maghrebids and Apennines), revealing important similarities and local differences.Research supported by PID2020-114381GB-I00 Research Project (Spanish Ministry of Education and Science), EU HORIZON project CiROCCO under Grant Agreement No 101086497, Research Groups and projects of the Generalitat Valenciana from Alicante University (CTMA-IGA), and Research Group RNM-188 of the Junta de Andalucía from EEZA–CSIC

    Call to restrict neonicotinoids

    Get PDF
    On 28 April 2018 the European Parliament voted for a complete and permanent ban on all outdoor uses of the three most commonly used neonicotinoid pesticides. With the partial exception of the state of Ontario, Canada, governments elsewhere have failed to take action. Below is a letter, signed by 232 scientists from around the world, urgently calling for global action by policy makers to address this issue
    corecore