6,688 research outputs found

    Motional Squashed States

    Full text link
    We show that by using a feedback loop it is possible to reduce the fluctuations in one quadrature of the vibrational degree of freedom of a trapped ion below the quantum limit. The stationary state is not a proper squeezed state, but rather a ``squashed'' state, since the uncertainty in the orthogonal quadrature, which is larger than the standard quantum limit, is unaffected by the feedback action.Comment: 8 pages, 2 figures, to appear in the special Issue "Quantum Correlations and Fluctuations" of J. Opt.

    Molecular detection of parasites (Trematoda, Digenea: Bucephalidae and Monorchiidae) in the European flat oyster Ostrea edulis (Mollusca: Bivalvia)

    Get PDF
    Members of the globally distributed bivalve family Ostreidae (oysters) have a significant role in marine ecosystems and include species of high economic importance. In this work, we report the occurrence of digenean parasites of the families Bucephalidae (Prosorhynchoides sp.) and Monorchiidae (Postmonorchis sp.) in Mediterranean native populations of Ostrea edulis (but not in the introduced Magallana gigas). Molecular detection was based on DNA sequencing of the ribosomal intergenic spacer 2 (ITS2) marker. The importance of detecting the presence of overlooked digenean parasites in Mediterranean oysters is discussed. © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

    A Study of the Antiferromagnetic Phase in the Hubbard Model by means of the Composite Operator Method

    Full text link
    We have investigated the antiferromagnetic phase of the 2D, the 3D and the extended Hubbard models on a bipartite cubic lattice by means of the Composite Operator Method within a two-pole approximation. This approach yields a fully self-consistent treatment of the antiferromagnetic state that respects the symmetry properties of both the model and the algebra. The complete phase diagram, as regards the antiferromagnetic and the paramagnetic phases, has been drawn. We firstly reported, within a pole approximation, three kinds of transitions at half-filling: Mott-Hubbard, Mott-Heisenberg and Heisenberg. We have also found a metal-insulator transition, driven by doping, within the antiferromagnetic phase. This latter is restricted to a very small region near half filling and has, in contrast to what has been found by similar approaches, a finite critical Coulomb interaction as lower bound at half filling. Finally, it is worth noting that our antiferromagnetic gap has two independent components: one due to the antiferromagnetic correlations and another coming from the Mott-Hubbard mechanism.Comment: 20 pages, 37 figures, RevTeX, submitted to Phys. Rev.

    Assessment of the resistance model uncertainties in plane stress NLFEA of cyclically loaded reinforced concrete systems

    Get PDF
    The present work is devoted to estimate the resistance model uncertainty within plane stress non-linear finite element analyses (NLFEAs) of reinforced concrete structures subjected to cyclic loads. Specifically, various shear walls experimentally tested are considered for the investigation. The comparison between the plane stress NLFE structural model results and the experimental outcomes is carried out considering the possible modelling hypotheses available to describe the mechanical behaviour of reinforced concrete members subjected to cyclic loads. Several NLFE structural models are defined for each experimental test in order to investigate the resistance model uncertainty

    Accelerating Bayesian microseismic event location with deep learning

    Get PDF
    We present a series of new open-source deep-learning algorithms to accelerate Bayesian full-waveform point source inversion of microseismic events. Inferring the joint posterior probability distribution of moment tensor components and source location is key for rigorous uncertainty quantification. However, the inference process requires forward modelling of microseismic traces for each set of parameters explored by the sampling algorithm, which makes the inference very computationally intensive. In this paper we focus on accelerating this process by training deep-learning models to learn the mapping between source location and seismic traces for a given 3D heterogeneous velocity model and a fixed isotropic moment tensor for the sources. These trained emulators replace the expensive solution of the elastic wave equation in the inference process. We compare our results with a previous study that used emulators based on Gaussian processes to invert microseismic events. For fairness of comparison, we train our emulators on the same microseismic traces and using the same geophysical setting. We show that all of our models provide more accurate predictions, ∼ 100 times faster predictions than the method based on Gaussian processes, and a (105) speed-up factor over a pseudo-spectral method for waveform generation. For example, a 2 s long synthetic trace can be generated in ∼ 10 ms on a common laptop processor, instead of ∼ 1 h using a pseudo-spectral method on a high-profile graphics processing unit card. We also show that our inference results are in excellent agreement with those obtained from traditional location methods based on travel time estimates. The speed, accuracy, and scalability of our open-source deep-learning models pave the way for extensions of these emulators to generic source mechanisms and application to joint Bayesian inversion of moment tensor components and source location using full waveforms.</p

    Pattern formation without heating in an evaporative convection experiment

    Get PDF
    We present an evaporation experiment in a single fluid layer. When latent heat associated to the evaporation is large enough, the heat flow through the free surface of the layer generates temperature gradients that can destabilize the conductive motionless state giving rise to convective cellular structures without any external heating. The sequence of convective patterns obtained here without heating, is similar to that obtained in B\'enard-Marangoni convection. This work present the sequence of spatial bifurcations as a function of the layer depth. The transition between square to hexagonal pattern, known from non-evaporative experiments, is obtained here with a similar change in wavelength.Comment: Submitted to Europhysics Letter

    One-step replica symmetry breaking solution of the quadrupolar glass model

    Full text link
    We consider the quadrupolar glass model with infinite-range random interaction. Introducing a simple one-step replica symmetry breaking ansatz we investigate the para-glass continuous (discontinuous) transition which occurs below (above) a critical value of the quadrupole dimension m*. By using a mean-field approximation we study the stability of the one-step replica symmetry breaking solution and show that for m>m* there are two transitions. The thermodynamic transition is discontinuous but there is no latent heat. At a higher temperature we find the dynamical or glass transition temperature and the corresponding discontinuous jump of the order parameter.Comment: 10 pages, 3 figure

    Continuous quantum nondemolition feedback and unconditional atomic spin squeezing

    Get PDF
    We discuss the theory and experimental considerations of a quantum feedback scheme for producing deterministically reproducible spin squeezing. Continuous nondemolition atom number measurement from monitoring a probe field conditionally squeezes the sample. Simultaneous feedback of the measurement results controls the quantum state such that the squeezing becomes unconditional. We find that for very strong cavity coupling and a limited number of atoms, the theoretical squeezing approaches the Heisenberg limit. Strong squeezing will still be produced at weaker coupling and even in free space (thus presenting a simple experimental test for quantum feedback). The measurement and feedback can be stopped at any time, thereby freezing the sample with a desired amount of squeezing.Comment: 17 pages, 5 figures, submitted to JP
    • …
    corecore