6,552 research outputs found

    Recovering quantum information through partial access to the environment

    Full text link
    We investigate the possibility of correcting errors occurring on a multipartite system through a feedback mechanism that acquires information from partial access to the environment. A partial control scheme of this kind might be useful when dealing with correlated errors. In fact, in such a case, it could be enough to gather local information to decide what kind of global recovery to perform. Then, we apply this scheme to the depolarizing and correlated errors, and quantify its performance by means of the entanglement fidelity

    Quantum Characterization of a Werner-like Mixture

    Full text link
    We introduce a Werner-like mixture [R. F. Werner, Phys. Rev. A {\bf 40}, 4277 (1989)] by considering two correlated but different degrees of freedom, one with discrete variables and the other with continuous variables. We evaluate the mixedness of this state, and its degree of entanglement establishing its usefulness for quantum information processing like quantum teleportation. Then, we provide its tomographic characterization. Finally, we show how such a mixture can be generated and measured in a trapped system like one electron in a Penning trap.Comment: 8 pages ReVTeX, 8 eps figure

    Stochastic resonance in Gaussian quantum channels

    Get PDF
    We determine conditions for the presence of stochastic resonance in a lossy bosonic channel with a nonlinear, threshold decoding. The stochastic resonance effect occurs if and only if the detection threshold is outside of a "forbidden interval". We show that it takes place in different settings: when transmitting classical messages through a lossy bosonic channel, when transmitting over an entanglement-assisted lossy bosonic channel, and when discriminating channels with different loss parameters. Moreover, we consider a setting in which stochastic resonance occurs in the transmission of a qubit over a lossy bosonic channel with a particular encoding and decoding. In all cases, we assume the addition of Gaussian noise to the signal and show that it does not matter who, between sender and receiver, introduces such a noise. Remarkably, different results are obtained when considering a setting for private communication. In this case the symmetry between sender and receiver is broken and the "forbidden interval" may vanish, leading to the occurrence of stochastic resonance effects for any value of the detection threshold.Comment: 17 pages, 6 figures. Manuscript improved in many ways. New results on private communication adde

    Physical properties and radius variations in the HAT-P-5 planetary system from simultaneous four-colour photometry

    Get PDF
    The radii of giant planets, as measured from transit observations, may vary with wavelength due to Rayleigh scattering or variations in opacity. Such an effect is predicted to be large enough to detect using ground-based observations at multiple wavelengths. We present defocussed photometry of a transit in the HAT-P-5 system, obtained simultaneously through Stromgren u, Gunn g and r, and Johnson I filters. Two more transit events were observed through a Gunn r filter. We detect a substantially larger planetary radius in u, but the effect is greater than predicted using theoretical model atmospheres of gaseous planets. This phenomenon is most likely to be due to systematic errors present in the u-band photometry, stemming from variations in the transparency of Earth's atmosphere at these short wavelengths. We use our data to calculate an improved orbital ephemeris and to refine the measured physical properties of the system. The planet HAT-P-5b has a mass of 1.06 +/- 0.11 +/- 0.01 Mjup and a radius of 1.252 +/- 0.042 +/- 0.008 Rjup (statistical and systematic errors respectively), making it slightly larger than expected according to standard models of coreless gas-giant planets. Its equilibrium temperature of 1517 +/- 29 K is within 60K of that of the extensively-studied planet HD 209458b.Comment: Version 2 corrects the accidental omission of one author in the arXiv metadata. Accepted for publication in MNRAS. 9 pages, 4 figures, 7 tables. The properties of HAT-P-5 have been added to the Transiting Extrasolar Planet Catalogue at http://www.astro.keele.ac.uk/~jkt/tepcat

    Entropic Bounds as Uncertainty Measure of Unitary Operators

    Full text link
    We reformulate the notion of uncertainty of pairs of unitary operators within the context of guessing games and derive an entropic uncertainty relation for a pair of such operators. We show how distinguishable operators are compatible while maximal incompatibility of unitary operators can be connected to bases for some subspace of operators which are mutually unbiased

    The Pauli Equation for Probability Distributions

    Full text link
    The "marginal" distributions for measurable coordinate and spin projection is introduced. Then, the analog of the Pauli equation for spin-1/2 particle is obtained for such probability distributions instead of the usual wave functions. That allows a classical-like approach to quantum mechanics. Some illuminating examples are presented.Comment: 14 pages, ReVTe

    Proximal-sensing-powered modelling of energy-water fluxes in a vineyard: A spatial resolution analysis

    Get PDF
    Spatial resolution is a key parameter in energy–water surface flux modelling. In this research, scale effects are analyzed on fluxes modelled with the FEST-EWB model, by upscaling both its inputs and outputs separately. The main questions are: (a) if high-resolution remote sensing images are necessary to accurately model a heterogeneous area; and (b) whether and to what extent low-resolution modelling provides worse/better results than the upscaled results of high-resolution modelling. The study area is an experimental vineyard field where proximal sensing images were obtained by an airborne platform and verification fluxes were measured via a flux tower. Modelled fluxes are in line with those from alternative energy-balance models, and quite accurate (NSE = 0.78) with respect to those measured in situ. Field-scale evapotranspiration has resulted in both the tested upscaling approaches (with relative error within ±30%), although fewer pixels available for low-resolution calibration may produce some differences. When working at low resolutions, the model has produced higher relative errors (20% on average), but is still within acceptable bounds. This means that the model can produce high-quality results, partially compensating for the loss in spatial heterogeneity associated with low-resolution images
    corecore