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Abstract: Spatial resolution is a key parameter in energy–water surface flux modelling. In this re-

search, scale effects are analyzed on fluxes modelled with the FEST-EWB model, by upscaling both 

its inputs and outputs separately. The main questions are: (a) if high-resolution remote sensing im-

ages are necessary to accurately model a heterogeneous area; and (b) whether and to what extent 

low-resolution modelling provides worse/better results than the upscaled results of high-resolution 

modelling. The study area is an experimental vineyard field where proximal sensing images were 

obtained by an airborne platform and verification fluxes were measured via a flux tower. Modelled 

fluxes are in line with those from alternative energy-balance models, and quite accurate (NSE = 0.78) 

with respect to those measured in situ. Field-scale evapotranspiration has resulted in both the tested 

upscaling approaches (with relative error within ±30%), although fewer pixels available for low-

resolution calibration may produce some differences. When working at low resolutions, the model 

has produced higher relative errors (20% on average), but is still within acceptable bounds. This 

means that the model can produce high-quality results, partially compensating for the loss in spatial 

heterogeneity associated with low-resolution images. 
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1. Introduction 

The agricultural management of extended crops, on its day-by-day evolution, re-

quires extensive and comprehensive tools that allow a full knowledge of the plants’ status 

[1,2]. Plant activity can be analyzed through a number of variables, all strictly linked to 

one another through the energy and water mass balances in the surface–atmosphere layer 

[3–5]. 

The characterization of the main driving forces allows modelling the water mass ex-

changes [6]. Evapotranspiration (ET), the sum of the water freely evaporated from the soil 

(and the leaves surface) and transpired through the leaf stomata in plants, is often consid-

ered a proxy for plant growth rate [7,8]. The water mass balance and the energy balance 

are coupled through the ET-Latent Heat relation [9,10]. 

The simplest models are lumped: fluxes are computed vertically, for a single point in 

space, and they are assumed as representative of the entire reference area [11]. In distrib-

uted models, the interest area is subdivided as more or less extended 

The cells, each with their own local characteristics, and the fluxes are computed for 

all cells in an attempt to capture their spatial heterogeneity [12]. The improved accuracy 

comes at the cost of a more extensive data collection and at the risk of worsening model 

errors through overparameterization [11,13]. 

In this framework, the galloping progress [14,15] of Remote Sensing (RS) has allowed 

a boost in distributed modelling: data can be obtained with a relatively high temporal 
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frequency (up to a daily basis) and with varying spatial resolutions (up to 10 m for freely 

available satellite data with continuous data coverage). Field campaigns with flight-borne 

tools and Unmanned Aerial Vehicles (UAVs), although money- and time-consuming, can 

improve these resolutions to 1 m and 1 cm, respectively [16,17]. Thus, the joint use of flux 

modelling and RS can help determine, with varying time frequencies and spatial accura-

cies, the crop ET in order to optimize the irrigation water use [18–22]. 

According to their energy partition principles, energy balance models can be classi-

fied as One-Source (1S) or Two-Source (2S). The former assumes complete cell homoge-

neity in the energy exchanges [23]; the latter identifies a vegetated and a non-vegetated 

sub-area within the given cell and differentiates the energy exchange dynamics of the two 

[24,25]. By construction, 1S models are more appropriate for homogeneous crops, like 

maize and cotton [26,27]; 2S models can better interpret heterogeneous ones, such as ar-

boreal crops [28]. 

Spatial resolution is a key parameter in the surface energy flux modelling [29]. Pixel 

homogeneity can be identified as the main issue [13,30]. Ershadi et al. [31] affirm that 

many models may struggle with aggregation since pixel homogeneity is commonly as-

sumed in terms of meteorological conditions (true for field-scale problems) and land sur-

face characteristics (true only for some crops). For what concerns vegetation, a field-size 

resolution would be ideal according to Anderson et al. [32], since they showed that vege-

tation indices heterogeneity within a field can be assumed to be linear, whereas the same 

cannot be said for intra-field heterogeneity. On the other hand, some crops such as vine-

yards are “typically characterized by natural spatial variability […] not only among dif-

ferent vineyards but also at smaller scales within the same vineyard” [33]. Liang [34] 

found linearity in the 30 m–1 km range for the aggregation of leaf area index and albedo, 

although doubting the efficacy of satellite-retrieved leaf area index in land surface models 

over heterogeneous regions. Moran et al. [35] found that high relative errors on aggregat-

ing land surface temperature (>50%) were due to the non-linearity of the relations between 

sensors and models. Ershadi et al. [31] focused on the dependency of roughness lengths 

(used to compute aerodynamic resistances) on spatial resolution. 

A number of ET-focused studies have tested the influence of spatial resolution. 

Kustas et al. [36] employed histograms to investigate the effect of low-resolution input 

data in latent and sensible heat fluxes modelled with TSEB. Their case study was homo-

geneous in terms of overall land cover, with a duality in terms of crop type between corn 

and soybean. The analysis focused mainly on the histogram shapes across scales, trying 

to identify the two ET peaks corresponding to the two crops, progressively less visible 

until the 960 m resolution. In their study, Ershadi et al. [31] operated a dual aggregation 

approach: at a series of resolutions, energy fluxes were computed both as aggregations of 

high-resolution products (“calculate, then aggregate”) and as model results of aggregated 

model inputs (“aggregate, then calculate”). In the case of input aggregation, they found 

major relative errors for the latent heat (>40%), in particular at the coarsest resolution (960 

m), attributing them to the land surface heterogeneity and its incompatibility with the 

low-resolution roughness height parameterization. A similar approach was taken by 

Sharma et al. [37]. They obtained surface energy fluxes from the SEBS model, employing 

high resolution (60 m) Landsat temperature data. Using the simple averaging aggregating 

method, they found that ET data were better preserved with output upscaling than with 

input upscaling, as in the former case the coarser-scale ET relative error reached, at most, 

28%, whereas in the latter it stretched just above 40%. 

In this work, scale effects on a distributed hydrological model, FEST-EWB [38] are 

analyzed. The model closes, for every pixel, the energy and water mass balances employ-

ing the Representative Equilibrium Temperature (RET), the model equivalent of the Land 

Surface Temperature (LST), as an internal variable. By construction, the model is a hybrid 

between the 1S and 2S models, partitioning the turbulent fluxes (Latent and Sensible Heat) 

among the vegetated and non-vegetated components of each cell [38]. The test site is a 

vineyard in Sicily, for which high-resolution (1.7 m) temperature and vegetation data have 
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been gathered in summer 2008 by airborne proximal sensing [39,40]. A high-resolution 

run of the model is employed as a reference for a comparison between lower-resolution 

results: on the one hand, model outputs are aggregated to coarser scales; on the other, 

model inputs are upscaled before independent model runs produce the same outputs di-

rectly at the coarser resolutions. 

The main objective is to determine the model sensitivity to spatial resolution, in par-

ticular providing a more operative and practical perspective by focusing on the ET, fre-

quently used in support of irrigation. As the scales chosen for the analysis are related to 

those of commonly available RS data (such as reflectance from Sentinel-2 or thermal data 

from Landsat and MODIS), ranging from 10 to 1000 m, this study aims to evaluate the 

performance of the model with different input data over a complex and heterogeneous 

area such as a vineyard. 

The main investigation points are: 

1. Are high-resolution data strictly necessary to accurately model an area as heteroge-

neous as a vineyard? 

2. Can a high-resolution calibration help the model to interpret low-resolution data? 

3. Does the low-resolution model run provide worse results than the upscaled results 

of a high-resolution run? 

2. Materials and Methods 

The first part of this work consists of a preliminary step that establishes the calibra-

tion and validation of the FEST-EWB distributed hydrological model over the vineyard 

test-case (Section 3.1). Model inputs include meteorological data from an eddy covariance 

station in the middle of the test field (Section 2.3.3) and radiometric measurements ob-

tained from five flights conducted in the summer of 2008 (Section 2.3). The model ET re-

sults are employed in the validation step and also compared with the other energy balance 

models, SEBAL Mountain (hereinafter “SEBAL”) and TSEB, detailed by Ciraolo et al. [39] 

(Sections 3.1.2 and 3.1.3). 

The second step is the scale analysis proper. Both model inputs and outputs are up-

scaled to four coarser resolutions associated with some common RS products. In Section 

3.3, model inputs have been employed to perform new model calibrations at each scale, 

all independent among themselves and from the original calibration. Finally, the results 

of these calibrations are contrasted with the upscaled outputs and the native-resolution 

results in Section 3.4. 

2.1. FEST-EWB 

The FEST-EWB (Flash-flood Event-based Spatially-distributed rainfall-runoff Trans-

formation Energy–Water Balance) model is a distributed hydrological energy–water bal-

ance model [38]. It represents the step forward from the FEST model [41,42]. FEST-EWB 

has produced valuable ET estimates across all sorts of scales: from field to agricultural 

district [43–45] and river basin scale [46]. 

FEST-EWB solves, at the same time, the energy and water mass balance equations 

for each pixel in its distributed pattern. The solution to this system of equations is found 

iteratively by employing the Representative Equilibrium Temperature (RET) as an inter-

nal variable. This is identified as the surface temperature that regulates the energy parti-

tion and the water mass fluxes. It can be seen as the model counterpart of the radiometric 

surface temperature. For applications in RS, it has been assumed that the aerodynamic 

temperature equals the land surface temperature [47]. 

The core of the FEST-EWB equations system is described in Equation (1): 

{
𝑑𝑆𝑀/𝑑𝑡 = (𝑃 − 𝑅 − 𝑃𝐸 − 𝐸𝑇)/𝑑𝑧                  

𝑑𝑊/𝑑𝑡 = 𝑅𝑛 − 𝐺 − (𝐻𝑠 + 𝐻𝑐) − (𝐿𝑠 + 𝐿𝑐)
 (1) 
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where the first equation refers to the water mass balance: SM is the soil moisture (m3 m−3), 

z is the relative soil depth (m) and the water mass fluxes (mm h−1) are P for the precipita-

tion rate, R for the runoff flux, PE for the drainage flux and ET as the evapotranspiration 

rate. The second equation relates the energy balance, with W (J m−2) enclosing the energy 

storage terms, and the energy fluxes (W m−2): Rn as the net radiation, G as the soil heat 

flux, H as the sensible heat and L for the latent heat. The “s” and “c” subscripts that follow 

the sensible and latent heats refer to the “soil” and “canopy” components of the fluxes, 

respectively. All these terms of the system are functions of the input soil and vegetation 

parameters. 

Although the FEST-EWB is capable of performing long-running hydrological simu-

lations, the analysis performed in this study is composed of separate daily simulations for 

the flight overpass dates, as the necessary meteorological data are available only on the 

flight overpass dates. FEST-EWB input data include both stationary and time-varying in-

formation. Soil and terrain parameters belong to the former, and include descriptors of 

the soil water motion (e.g., hydraulic conductivity, pore-size index, bubbling pressure, 

residual and saturation water contents, active soil depth) and geo-morphological charac-

teristic of the basin (e.g., aspect, elevation, slope). Vegetation (e.g., plant height, vegetation 

fraction and leaf area index) and meteorological (e.g., rainfall, incoming shortwave radia-

tion, air temperature and relative humidity) parameters, on the other hand, mostly belong 

to the “time-varying” category. Minimum stomatal resistance (depending on the specific 

plant) and soil resistance to evaporation (depending on the soil type) are considered to be 

fixed with time. Finally, all input data can be provided either as single-valued or with 

their own spatial distribution, depending on data availability. 

Calibration and Validation Procedure 

The traditional calibration procedure for hydrological models features point-wise 

measurements of the calibration variable, like river discharge (e.g., for flood management 

purposes) or soil moisture (e.g., for agricultural applications) collected at specific points, 

which are limited in number and only represent a part of the basin response to the hydro-

logical cycle. The FEST-EWB hydrological model, on the other hand, allows a pixel-by-

pixel calibration, particularizing the calibration parameters with a spatial heterogeneity 

derived from the calibration variable patterns [46,48,49]. 

The calibration of the FEST-EWB distributed hydrological model has been per-

formed by means of a pixel-by-pixel comparison between the modelled Representative 

Equilibrium Temperature (RET) and the remotely-sensed Land Surface Temperature 

(LST). The calibration process is regulated by the pixel-by-pixel minimization of the aver-

age model error, defined as the objective function O (Equation (2)). 

𝑂 ≝
1

𝑛
∙ ∑ (𝑅𝐸𝑇𝑖 − 𝐿𝑆𝑇𝑖)

𝑛
𝑖=1 , (2) 

where n stands for the total number of calibration dates selected. The pixel-by-pixel ap-

proach of the calibration process allows to refine the spatial heterogeneity of the calibra-

tion parameters involved. 

In previous applications of the model [48], four main parameters have been found to 

be critical for the calibration process: the Brooks–Corey (or pore-size distribution) index, 

the saturated hydraulic conductivity, the soil depth and the minimum stomatal resistance. 

Of these, the first three are mainly related to water geodynamics, while the latter is more 

closely connected to the ET process. As the daily simulations are performed in summer 

days with no precipitation or irrigation, offering a restricted time window, they are not 

enough to capture the water dynamics influenced by the former three parameters detailed 

above, thus decreasing their relative influence in the model performance for this particu-

lar application. Hence, it has been decided to calibrate the model working only on the 

minimum stomatal resistance, given its strong link to the energy partition mechanisms. 
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Furthermore, some preliminary analyses have shown that also the soil surface re-

sistance (employed in the computation of the soil latent heat) needs to be considered in 

the calibration. This decision is motivated by the fact that highly heterogeneous canopy 

structures, like a vineyard’s, create complex air and heat patterns in the zone between the 

soil surface and canopy roof. These complexities are strongly influenced by the unvege-

tated areas between the vine rows, which are clearly visible to the model thanks to the 

high data resolution (1.70 m against the inter-row space of 2.40 m). Thus, the role of the 

non-vegetated areas among the vine rows needs to be properly addressed by its own soil 

resistance term in the energy balance equation. 

The possibility to calibrate the model using LST and validate it using energy fluxes 

obtained from an independent source allows a synchronous calibration/validation pro-

cess. All energy fluxes are involved in the validation process: Net Radiation, Soil Thermal 

Flux, Sensible Heat and Latent Heat. 

In the validation process are also included, as a reference, two widely-used and es-

tablished energy models: SEBAL [23] and TSEB [10]. They belong to two distinct catego-

ries of energy balance models: single-source and two-source, respectively [50]. The former 

portrays each pixel as a homogeneous area, with a single energy balance equation (Equa-

tion (3a)) where the Latent Heat can be obtained residually after obtaining the Sensible 

Heat as a function of the radiometric/aerodynamic temperature TOH [K] and the aerody-

namic resistance RAH [s m−1] (Equation (3b)). 

𝐿 = 𝑅𝑛 − 𝐺 − 𝐻, (3a) 

𝐻 = 𝜌𝐶𝑃

𝑇𝑂𝐻 − 𝑇𝐴

𝑅𝐴𝐻
 (3b) 

The two-source models, such as TSEB, partition the energy balance into two distinct 

equations, one referring to the non-vegetated (Equation (4a)) and the other to the vege-

tated fraction (Equation (5a)) of the given area. Sensible Heat exchanges are differentiated 

through a transition zone at air canopy temperature TAC [K], before being summed to 

gather the overall flux from the pixel. Latent Heat from the canopy (LC, W m−2) is obtained 

from potential-state formulations, such as Priestley-Taylor’s [51], while its bare-soil coun-

terpart (LS, W m−2) is obtained residually. 

𝐿𝑆 = 𝑅𝑛𝑆 − 𝐺 − 𝐻𝑆, (4a) 

𝐻𝑆 = 𝜌𝐶𝑃

𝑇𝑆 − 𝑇𝐴𝐶

𝑅𝑆
, (4b) 

𝐿𝐶 + 𝐻𝐶 = 𝑅𝑛𝐶 , (5a) 

𝐻𝐶 = 𝜌𝐶𝑃

𝑇𝐶 − 𝑇𝐴𝐶

𝑅𝑋
 (5b) 

Being the FEST-EWB structure somewhere in between these opposite approaches, 

these models have been considered in the analysis in order to provide a well-established 

reference for the FEST-EWB performance. The results used for the comparison are pro-

vided by [39], working on the same input data as those employed for the FEST-EWB runs. 

2.2. Scale Analysis 

The original data employed in this study are obtained by airplane flight and are char-

acterized by a spatial resolution of 1.7 m, relatively high in the field of agricultural appli-

cations of remote sensing [52]. The importance of spatial resolution has been tested on the 

FEST-EWB through scale analysis (Figure 1). Firstly, the model outputs (latent and sensi-

ble heats, soil moisture and representative equilibrium temperature) have been upscaled 
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to some specific spatial resolutions (Section 3.2). Then, the input data have been aggre-

gated to the same scales and fed to the model, which is calibrated anew for each spatial 

resolution employing the same calibration function of the highest-resolution calibration 

(Section 3.3). The model results, either originated from the upscaling of the native-resolu-

tion results or after the model calibration employing upscaled input data, have then been 

compared. 

 

Figure 1. Flowchart of the two approaches compared in the scale analysis. The calibration/valida-

tion process for the FEST-EWB model is also detailed in the lowermost box. 

The scales chosen for the analysis have been selected by similarity with those of some 

common satellite products: 10 m for Sentinel-2; 30 m for Landsat multispectral; 250 m for 

MODIS Visible and 1000 m for MODIS Thermal. To avoid reprojections that could alter 

the original data, the target scales are picked among the multiples of the native scale (1.7 

m): 10.2 m for similarity with Sentinel, 30.6 m with Landsat, 244.8 m for MODIS Visible 

and 734.4 m (the total extension of the area) for MODIS Thermal. 

The upscaling has been performed through simple averaging of the original data to 

the target resolutions. The process is detailed in the following, as a nominative example, 

for the production of the 10.2 m upscaled product. The ratio (6:1) between the target (10.2 

m) and native (1.7 m) spatial resolutions indicates that any target pixel covers 36 (6 × 6) 

native pixels. The value to assign to the target pixel is obtained as the average of the 36-

pixel sample. For each sample, also the standard deviation is retained as an indirect meas-

ure of the pixel heterogeneity. Thus, for each final product, both an average and a stand-

ard-deviation map are stored. The process is repeated, always starting from the native 1.7 

m spatial resolution, for all the scales involved in the analysis. 

2.3. Case Study and Data Overview 

The study area is the experimental vineyard field of the “Tenute Rapitalà” farm in 

the territory of Camporeale (Sicily, Italy). Data for this study have been collected during 

the June–September 2008 “Digitalizzazione della Filiera Agro-Alimentare” (DIFA) field 

campaign described in [39,40]. 

The case study is shown in Figure 2. The cyan square identifies the modelling area, 

while the central yellow-bordered area identifies the main experimental field, composed 

of four sectors separated by two cross-positioned paths. This main area hosts the eddy 

covariance station (photo provided in the upper-right corner) and is thus the main focus 

for the comparisons with its data. The vineyards are organized in rows 2.4 m apart; in 

each row, the single plants are positioned every 0.95 m, resulting in a global plant density 

of 4386 plants per hectare. The terrain shows a mild slope (<10%), oriented towards S-SW. 

The soil texture is classified as loam (20% clay, 29% silt and 51% sand), with 1.7% organic 

content. Residual Water Content (RWC) is estimated at 0.04 m3 m−3, whereas Saturation 



Remote Sens. 2021, 13, 4699 7 of 26 
 

 

Water Content (SWC) is estimated at 0.45 m3 m−3 [53]. Drip irrigation is the main irrigation 

practice for the area. 

 

Figure 2. Location of the target area in Sicily. In the upper-right corner, a photograph of the eddy covariance station, from 

[39]. 

2.3.1. Airborne Proximal Sensing Data: Acquisition and Radiometric Calibration 

Five remote sensing acquisitions have been carried out during the summer of 2008, 

using the airborne platform SKY ARROW 650 TC/TCNS with a sampling height around 

1000 m above ground level. A multispectral Duncantech MS4100 camera operating in the 

767–832, 650–690 and 530–570 nm bands has been used to retrieve the visible (VIS) and 

near-infrared (NIR) images; a Flir SC500/A40M camera, working in the 7500–13,000 nm 

band, provided the thermal infrared (TIR) images. This distinction resulted in a different 

nominal pixel resolution for the VIS/NIR data (0.7 m) and the TIR data (1.7 m). The origi-

nal data have been aggregated at 1.7 m using a pixel aggregate method. Thus, the 1.7 m 

spatial resolution is assumed as reference resolution for scale effects analyses. 

The flights were been carried over in 5 days in 2008: 11th June (DOY 163), 3rd (185) 

and 22nd (204) July, 22nd August (235) and 3rd September (247). These days were all char-

acterized by optimal meteorological conditions to improve the quality of the data collec-

tion process. 

Further details on the thermal image pre-processing are discussed in Appendix A. 

Leaf Area Index (LAI) and vegetation fraction (fV) data have been gathered employ-

ing LAI-2000 Plant Canopy analyzer, an optoelectronics instrument. Plant height infor-

mation has been obtained from NDVI data by means of an empirical relation calibrated in 

situ. 

2.3.2. Digital Elevation Model: GNSS Acquisitions and Geostatistical Analysis 

The digital elevation model (DEM) was obtained by interpolating orthometric alti-

tudes measured via GNSS (Global Navigation Satellite System). A GNSS receiver, namely 
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a Topcon GMS-2, was mounted on a tractor allowing characterizing the study area alti-

tude by running up and down along the middle of all the vineyard lanes. 

A simple Differential GPS (DGPS) provided position solutions with accuracies com-

parable to the spatial resolution of the images (≈2 m). 

Data were acquired on the 17th June (DOY 169) between 7:45 and 12:45 UTC at 5 s 

time steps, for a total amount of ≈3037 positions. Of these, 136 positions were removed to 

missing differential correction. 

Further information on this pre-processing step is provided in Appendix B. 

2.3.3. Eddy Covariance Data 

A flux tower was located at the center of the experimental field for the entire duration 

of the monitoring period. The station is equipped to measure also air temperature and 

humidity by a sensor placed at 2.75 m above ground and a pluviometer, with 0.2 mm 

accuracy, installed at 2 m above ground. The eddy covariance setup included a CSAT3 

sonic anemometer and an open-path LICOR-7500 IR Gas analyzer operating at 3.40 m 

above ground and with 20 Hz measurement frequency, although the final data are pro-

vided with the 30 min time step common for these kinds of set-ups. The turbulent fluxes 

exchanges have then been estimated from the vertical wind covariance with several pa-

rameters: the air temperature (to determine the sensible heat), the water vapor density (for 

the latent heat) and the CO2 density (for the carbon dioxide flux). A detailed description 

of eddy covariance data analysis is provided in [40]. 

At each time step, the four components of the energy balance are then available: Net 

Radiation (Rn), Soil Thermal Flux (G), Latent Heat (L) and Sensible Heat (H). The closing 

of the energy balance is summed up in the average angular coefficient of the energy-bal-

ance interpolators, estimated at 0.95, together with the data dispersion value, averaging 

0.83. This is consistent with the fact that, when measured with eddy covariance stations, 

the energy balance is not closed by definition, as the available energy is always higher 

than the turbulent fluxes (as well known in literature: [54,55]). More insight into the en-

ergy closure plots for each measurement day is provided in Appendix C. Due to the nature 

of surface energy balance models, which are based on the closure of the energy budget, 

the eddy data must be corrected by distributing the error among the turbulent fluxes ac-

cording to the Bowen ratio to force the closure of the energy balance [56]. However, be-

cause of some low-quality long-wave radiation data, the corrected Latent and Sensible 

Heats may become out of phase with respect to their “expected” peak time. This issue will 

be explored more in depth in Section 3.1.2. 

Data measured from eddy covariance stations generally do not refer to the single 

point in space in which the instrument is placed, but are influenced by the aerodynamic 

conditions of the atmosphere bottom layer in which it is located. An approximate analyt-

ical model has been developed [57], to simulate the measurement distance of an instru-

ment for given atmospheric conditions. This model has then been expanded in a bidimen-

sional formulation to compute the areal footprint of the eddy covariance measurement 

[58]. 

Local micro-meteorological conditions determine how wide the area that contributes 

to the actual measure is. For our case study, average day-time conditions determine that 

90% of the eddy footprint area covers 10 ha. According to the data spatial resolution, these 

numbers can mean that a footprint computation is required to aptly simulate the meas-

urement performed by the instrument. Lower resolutions cover most of the footprint with 

only one pixel, meaning that the simple pixel value is enough for the comparison with the 

eddy station measurements. 

2.3.4. Global Data Overview 

The information about the employed data is summed up in Table 1. 
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Table 1. Overview of available data. “✔” sign for available data, “✘” for absence of data. 

Test Days 11th Jun 3rd Jul 22nd Jul 22nd Aug 3rd Sep 

DOYs (year 2008) 163 185 204 235 247 

Meteorological data ✔ ✔ ✔ Partial ✔ 

Energy Fluxes ✔ ✔ ✘ Partial ✔ 

Flight time (local, UTC + 2) 10:45 08:15 08:45 09:15 08:45 

Land Surface Temperature ✔ ✔ ✔ ✔ ✔ 

Calibration date Yes No Yes No Yes 

Validation date Yes Yes No Yes Yes 

Energy fluxes information was unavailable for 22nd July, disqualifying it as a feasi-

ble date for the validation step. Meteorological and energy fluxes data for 22nd August 

were available only for the 10:00–21:30 time range, implying that the conditions at the time 

of the flight overpass (09:15) could not be simulated using FEST-EWB. This means that 

this date could not be included in the calibration. Finally, data from 3rd July have been 

excluded from the calibration step because of incongruencies in the reported flight time 

with usual registered LSTs. Turbulent flux data, on the other hand, are employed in the 

validation process. As already stated in Section 2.1, data are available only on single flight 

dates. Because of this restriction, no continuous model run could be performed. Instead, 

single daily simulations were executed. 

3. Results 

3.1. FEST-EWB Calibration/Validation 

3.1.1. Calibration 

As stated in Section 2.1, the short daily simulations without any precipitation nor 

irrigation do not allow the possibility for the model to capture the water dynamics influ-

enced by the soil calibration parameters. Hence, the calibration has been restricted to two 

parameters linked to the evapotranspiration process: the minimum stomatal resistance 

(rS,min) and the soil surface resistance (rS). These parameters have been corrected across 

numerous simulations with the aim of minimizing the temperature error, as detailed in 

the “Calibration and Validation procedure” section. The results of this calibration are de-

tailed in Table 2. Originally, soil surface resistance was set to 500 s/m for all the pixels; 

minimum stomatal resistance, on the other hand, was set to 200 s/m for highly vegetated 

pixels and to 50 s/m for the remaining pixels, based on the well-established literature val-

ues for vineyards and grass patches, respectively. 

Table 2. Parameter statistics before and after the calibration process. 

Parameter 
Before Calibration After Calibration 

Average Min–Max Average Min–Max 

rS,min 128 s/m 50–200 s/m 606 s/m 50–1920 s/m 

rS 500 s/m - 603 s/m 0–1920 s/m 

The comparison between modelled RET and estimated LST is shown in Figure 3 for 

the three calibration dates. The results show a good correspondence, especially in the dis-

tinction between warmer bare-soil areas and cooler vegetated patches. Some areas have 

been blanked out, as they are not pertinent to the analysis (artificial basins, tarmac, and 

buildings). 
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Figure 3. Comparison between FEST-EWB generated RET (upper row) and proximally sensed LST 

(lower row) for the three calibration dates. 

Model biases (difference between modelled RET and estimated LST) are plotted in 

detail in Figure 4, both in map and histogram formats. Model errors seem to be normally 

distributed around their average value, with most of the pixels (61%, 59% and 78% for 

each date, respectively) displaying an error within ±3°C of the target LST. For what con-

cerns the spatial distribution of the error, different trends are visible for each date. While 

11th June seems to have a uniform error distribution, 22nd July shows important under-

estimation-errors in the non-vegetated areas, and 3rd September displays a diffused over-

estimation in the vegetated part. In all three dates, however, some “spot”-like errors are 

present, mostly found in the western part of the image. For these “spot”-like areas, the 

model error seems to be distinguished from that of the nearby area: on 11th June, the 

model is much cooler than the LST in that area with respect to the central part of the test 

site, and on 22nd July, a sudden change in the model trend (from a sharp overestimation 

to a mild underestimation) is clearly visible. These problems may be due to the nature of 

the LST images employed, which are the result of a composition of different passages of 

the same airborne instrument over the area. Thus, some areas, although geographically 

close, can be sensed by the instrument in similar, but different, time intervals; a cloud 

temporarily obscuring the sun can then be enough to produce a sharp temperature differ-

ence between relatively close areas. The extent of these areas can be assessed in the origi-

nal LST images from Figure 3. On the other hand, some discontinuities in the RET distri-

bution can also be detected for 11th Jun and 3rd Sep. These may be linked to similar image 

composition problems in the input vegetation data. 
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Figure 4. Temperature differences (RET–LST) for the three calibration dates: spatial distributions 

(upper row) and histograms (lower row). 

The adaptation statistics for the calibration process are detailed in Table 3. On the 

left-hand side of the table, classic adaptation statistics are displayed: model-to-data bias 

(B), slope of the linear regression (m) and determination coefficient (R2). On the right-hand 

side, the surface temperature error (expressed in terms of Root Mean Square Error, RMSE) 

is sorted by vegetation degree (in terms of Leaf Area Index, LAI) of the relative pixel. 

Generally, lower errors are found for medium-to-high vegetation levels, although the 11th 

June test date shows a less definite trend. 

Table 3. Calibration statistics: Bias (B), linear interpolation slope (m) and determination coefficient 

(R2) on a global level. Root-Mean-Square-Error (RMSE) global and sorted by Leaf Area Index 

(LAI). 

Date B m R2 
RMSE [°C] by LAI [m2/m2] (Pixel Num.) Global 

RMSE <0.5 0.5–1 1–1.5 1.5–2 ≥2 

11th Jun −2.2°C 0.87 0.710 
3.5 

(18%) 

2.8 

(27%) 

3.0 

(22%) 

3.8 

(15%) 

4.5 

(17%) 
3.5°C 

22nd Jul −1.0°C 0.50 0.613 
5.6 

(13%) 

4.4 

(13%) 

3.7 

(16%) 

3.4 

(15%) 

3.3 

(42%) 
3.9°C 

3rd Sep +0.0°C 0.81 0.793 
3.8 

(25%) 

2.7 

(18%) 

2.3 

(20%) 

2.0 

(16%) 

2.2 

(22%) 
2.8°C 

3.1.2. Validation Results 

Among the FEST-EWB results, components of the energy balance for each pixel are 

available. These outputs can be compared with the quantities measured by the eddy co-

variance instruments, as detailed in Figure 5. For the modelled turbulent fluxes (L and H), 

both information extracted for the eddy footprint area and data from the station pixel itself 

are provided. For the purpose of validation, both original (black line) and Bowen-cor-

rected (red line) eddy covariance data are shown for both Latent and Sensible Heat. The 

corrected ones appear out-of-phase with the others, as a result of some problems with the 

longwave radiation data. These have been employed for the validation statistics detailed 

below, but original data have been preserved in Figure 5. 

In the lower panels, Net Radiation (Rn) and Soil Heat Flux (G) are compared, with 

positive results, although a slight out-of-phase relation between modelled and measured 
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fluxes is noticeable, in particular for the Soil Heat Flux. This, however, is consistent with 

the slight shift observed in the eddy station data, as mentioned earlier in Section 2.3.3, and 

can be blamed on some reference data inconsistencies. In the upper panels, Latent and 

Sensible Heats are displayed. The green line details the flux modelled in the station pixel; 

the yellow line depicts the average flux in the station footprint area. As detailed in Section 

2.3.3, the physics of the turbulent flux measurement require knowledge of a certain foot-

print area, highly dependent on the meteorological conditions, such as wind intensity and 

direction and atmospheric temperature. The presence of a consistent bare-soil area around 

the station is evident in the higher values of the Sensible Heat as opposed to the Latent 

Heat registered by the station. These dynamics are all well-captured by the model inter-

pretation. 

 

Figure 5. Daily energy fluxes, expressed in W m−2 against time (in hours). Fluxes are grouped by row (“L” = Latent Heat, “H” = 

Sensible Heat, “Rn” = Net Radiation, “G” = Soil Heat Flux), whereas validation dates are organized by column. 

The visual adaptation shown in Figure 5 is detailed in Table 4 with some common 

statistics. Linear interpolation slope (m), determination coefficient (R2) and Nash–Sutcliffe 

Efficiency (NSE) are provided for all the curves displayed in Figure 5. A comprehensive 

average column has been added to the right of the table. The turbulent fluxes are overall 

well-interpreted by the model (NSE > 0.5) when referred to the station pixel. As footprint 

filtration is introduced, model performances generally decrease (only the Latent Heat for 

11th June presents a performance increase when employing the footprint). This may be 

attributed to the extremely heterogeneous conditions of the vineyard crop structure which 

constrains the flux tower measurements to its immediate vicinity by hindering water va-

por (for latent heat) and heat (sensible heat) horizontal motion across the field. 

Table 4. Validation statistics by energy flux: linear interpolation slope (m), determination coeffi-

cient (R2) and Nash–Sutcliffe Efficiency (NSE) for the four validation dates together with their av-

erage (Avg.). 

Energy Flux Stat. 11th Jun 3rd Jul 22nd Aug 3rd Sep Avg. 

Latent Heat 

m 0.41 0.74 0.49 1.06 0.68 

R2 0.85 0.80 0.85 0.86 0.84 

NSE 0.446 0.790 0.776 0.573 0.646 

Latent Heat 

(flux tower footprint) 

m 0.74 1.3 1.1 1.4 1.14 

R2 0.93 0.80 0.85 0.81 0.85 
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NSE 0.880 −0.371 0.544 −1.09 −0.009 

Sensible Heat 

m 0.86 0.79 0.81 0.63 0.77 

R2 0.87 0.89 0.73 0.86 0.84 

NSE 0.846 0.849 0.811 0.693 0.800 

Sensible Heat 

(flux tower footprint) 

m 0.87 0.72 0.73 0.65 0.74 

R2 0.80 0.78 0.69 0.79 0.77 

NSE 0.761 0.695 0.743 0.653 0.713 

Net Radiation 

m 0.75 0.92 0.94 0.82 0.86 

R2 0.97 0.94 0.97 0.96 0.96 

NSE 0.897 0.940 0.967 0.929 0.933 

Soil Heat Flux 

m 5.5 6.4 6.9 5.7 6.13 

R2 0.84 0.81 0.78 0.82 0.81 

NSE 0.699 0.647 0.888 0.650 0.721 

3.1.3. Evapotranspiration Output 

Modelled evapotranspiration for the main experimental vineyard area is also evalu-

ated. The modelled ET is presented for the main experimental area, in form of histograms 

and spatial distributions, in Figure 6. Bare-soil paths are clearly visible in every date, to-

gether with an alternance between high- and low-ET pixels in the vine rows area. 

 

Figure 6. Daily evapotranspiration (in mm d−1) maps and histograms for the main experimental 

area. 

The averaged values have been compared with others, as reported in Figure 7. First, 

the Flux Tower estimated ET, which is relative only to the flux footprint area. Then, the 

global area ET (as shown in Figure 6) is estimated by two energy-balance models already 

employed in the comparison in [39]: the single-source SEBAL and the two-source TSEB. 

The modelled results seem quite in line with those of the other energy-balance models. 

This may be explained by the presence of vegetation (low grass) in the vines interrow, 

which participates in the overall evapotranspiration. The overall area, although not ho-

mogeneous, is less heterogeneous and can thus be portrayed with comparable accuracy 

by models with approaches both “extreme” to one another (SEBAL and TSEB) and “hy-

brid” between the two (FEST-EWB). Flux Tower results are quite low, with respect to the 

modelled ones, for the 3rd Jul and 3rd Sep dates. This can be explained by the fact that, in 

those days, the dominant wind direction is WNW, which is partially aligned with the 

main bare path, reducing the overall measured daily ET. By also displaying the eddy-pixel 

modelled data, without accounting for the station footprint, results similar to those meas-

ured by the eddy can be detected for the dates of 3rd July and 3rd September, while an 

underestimation is observed for 11th June. This could be explained by particularly turbu-

lent conditions in the proximity of the station, which caused the station to measure quan-

tities much more in its immediate vicinities. Thus, its measured value results are much 

closer to that of the station pixel than that suggested by the eddy station footprint theory. 

These results reflect the time series displayed in Figure 5, and the performance statistics 

detailed in Table 4, with low NSE values for the footprint-corrected data in the July and 

September dates (negative values) and higher values for the uncorrected modelled values 

(bigger than 0.5). 
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Figure 7. Average daily evapotranspiration for the main experimental area computed from the 

eddy covariance measurements (Flux Tower), the SEBAL, TSEB and FEST-EWB models (both 

pixel-wise and corrected by station footprint). 

3.2. Upscaled Outputs (UO) 

The aggregated maps employed in the scale analysis are shown in Figure 8. In the 

example 11th June date (11:00 local time): airborne-sensed Land Surface Temperature 

(LST), Latent Heat (L), Sensible Heat (H), Soil Moisture (SM) and Representative Equilib-

rium Temperature (RET) are shown. The results of the Upscaled Outputs approach are 

displayed on the left-hand side of the image. It appears that some surface heterogeneity 

features (e.g., bare-soil paths) are clearly preserved in the first step (10.2 m) and still dis-

tinguishable in the second (30.6 m), where the scale ratio is 18:1. From the third step (244.8 

m) all heterogeneity is lost. The information degradation process that follows the aggre-

gation is also visible when comparing the LST and RET evolution. Although the colors 

suggest slightly different values, the obliteration of the field-characterizing features is def-

initely similar. 

 

Figure 8. Overview of Land Surface Temperature (LST) and four FEST-EWB outputs across the 

selected scales and the two aggregation approaches: Latent Heat (L), Sensible Heat (H), Soil Mois-

ture (SM) and Representative Equilibrium Temperature (RET). 
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Data Variance across Scales 

In Figure 9, the evolution of the frequency distribution for the same data displayed 

in Figure 8 for 11th June (11:00) across the different scales is detailed. The first row dis-

plays the Upscaled Outputs results. FEST-EWB RET and flight-gathered LST (Figure 9a), 

modelled Latent and Sensible Heats (Figure 9b) and modelled soil moisture (Figure 9c) 

are shown. For each plot, the darkened area identifies the one-standard-deviation-range 

(±σ) around the average value. As scales progress, the overall data average is unaffected, 

whereas fewer pixels covering the same area determine a decreasing heterogeneity of the 

data. As the 734.4 m step is made up of just one pixel, all standard deviations are null at 

that stage. 

 

Figure 9. Average (solid line) and Standard Deviation (shaded area) of the remotely-sensed Land Surface Temperature 

(LST) some FEST-EWB outputs: Representative Equilibrium Temperature (RET, a,d), Latent (L) and Sensible Heats (H, 

b,e) and Soil Moisture (SM, c,f). Data from the Upscaled Outputs approach (upper row, a–c) and the Upscaled Inputs 

approach (lower row, d–f). 

In Figure 9a, the positive model interpretation of the LST transpires from the similar 

shape of the two plots. The bias that separates them at the native resolution, detailed in 

Table 5, is preserved along the aggregation process. In Figure 9b, it can be observed how 

Latent Heat tends to be more widely distributed than Sensible Heat. This distinction holds 

until the 30.6 m threshold, with the two fluxes gaining similar heterogeneity by the 244.8 

m step. This is consistent with the observations in Figure 8, where the heterogeneity fea-

tures are shown to hold until the 30.6 m upscaling step. The entity of these heterogeneity 

shifts is detailed in Table 5. For each product and each scale, the variation coefficient 

(standard deviation normalized with the average value) is shown, progressively decreas-

ing with the increase of the spatial resolution. 

Table 5. Variation coefficient for the variables shown in Figure 9 across all the tested scales. Data 

for the 734.4 m scale not included, since the value is, by definition, 0%. Model results described 

both from the Upscaled Outputs (UO) and Upscaled Inputs (UI) approaches. 

Dataset LST RET (UO) RET (UI) L (UO) L (UI) H (UO) H (UI) SM (UO) SM (UI) 

1.7 m 14% 15% 63% 34% 26% 

10.2 m 12% 12% 13% 57% 34% 30% 22% 20% 19% 

30.6 m 10% 10% 11% 49% 31% 26% 27% 16% 16% 

244.8 m 4% 4% 4% 18% 17% 10% 9% 7% 7% 
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3.3. Upscaled Inputs (UI) 

In the second part of the scale analysis, data inputs have been upscaled to the differ-

ent target scales before being employed in the model. Thus, after calibration, the model 

results are produced directly at the target scale, simulating the functioning of the model 

at coarser resolutions for the same data set. In order to identify the heterogeneity loss with 

spatial resolution of the model inputs, some of them are described in Table 6. Heteroge-

neity information is presented in terms of Variation Coefficient for all scales except the 

coarser (744.8 m), for which only one pixel is available. Since the aggregation is performed 

with the simple averaging approach, the average value of each parameter is preserved, 

just like the UO results. Variation coefficients decrease to about one fourth of their highest-

resolution value by the last scale step, indicating a quite uniform data levelling for the 

model input. 

Table 6. Variation coefficient for selected FEST-EWB model inputs across the selected scales. 

Parameter 1.7 m 10.2 m 30.6 m 244.8 m 

Albedo 27% 24% 21% 8% 

Vegetation Fraction 51% 38% 31% 13% 

Leaf Area Index 65% 45% 37% 15% 

Vegetation Height 43% 32% 27% 12% 

A similar effect is visible on the calibration parameters, and is detailed in Table 7 for 

all the calibration steps. The Variation Coefficient stays high (above 50%) until the 30.6 m 

step, before plummeting to the 25% value of the 244.8 m scale. The calibration functions 

employed for the two parameters are practically the same, except for overestimated val-

ues. This distinction brings about different calibrated datasets until the 10.2 m step. By the 

30.6 scale, the most extreme overestimations have been smoothed out, and the two pa-

rameters converge to similar distributions. 

Table 7. Average and variation coefficient for the calibration parameters of the different steps in 

the scale analysis. 

Parameter 
rS,min rS 

Average Var. Coeff. Average Var. Coeff. 

Original 127 s/m 59% 500 s/m - 

Calibrated, 1.7 m 579 s/m 63% 603 s/m 63% 

Calibrated, 10.2 m 410 s/m 51% 407 s/m 52% 

Calibrated, 30.6 m 355 s/m 58% 355 s/m 58% 

Calibrated, 244.8 m 399 s/m 25% 399 s/m 25% 

Calibrated, 734.4 m 310 s/m - 310 s/m - 

The scale evolutions for LST, RET, Latent Heat, Sensible Heat and Soil Moisture are 

portrayed in Figure 9 (lower row) for 11th June, 11:00 local time, with the relative variation 

coefficients detailed in Table 5. Turbulent fluxes (Figure 9e) show similar behaviors to 

those of the upscaled outputs (Figure 9b), with smaller variation coefficients, in particular 

in the Latent Heat and the higher-resolution steps. This may be attributed to the loss in 

spatial heterogeneity caused by the upscaling process: working on less heterogeneous in-

put data, the model provides less heterogeneous outputs. Analyzing the values in Table 6 

and those in Table 5, it can be observed that, for the 10.2 m and 30.6 m scales, UI Latent 

Heat presents six-tenths of the diversity shown by its UO counterpart. However, the for-

mer is originated from the input data with six- to seven-tenths of the heterogeneity of the 

UO one. 
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These concepts are less visible for the Soil Moisture, as evident by the similarity be-

tween Figure 9c,f. The difference is minimal, being slightly perceptible only in the num-

bers in Table 6, because of the reduced soil moisture dynamics due to the brevity of the 

simulated period. Most pixels retain values very close to those of the starting condition, 

which is obviously uninfluenced by the upscaling approach. 

3.4. Approaches Comparison 

3.4.1. Temperature Biases 

Figure 10 displays the summed-up surface temperature results for the two upscaling 

approaches. Green dots identify the average temperature biases (model RET against flight 

LST) obtained by upscaling the model outputs. The green area highlights the one-stand-

ard-deviation-range around the mean value (±σ). As already discussed, the averaging pro-

cess preserves the global mean. On the other hand, the orange dots provide the average 

temperature biases for the upscaled-input model results, with the orange areas identifying 

the standard deviation range as above. The independent calibrations that produce the up-

scaled-input results, although completely unrelated to the upscaled-output data, provide 

quite similar temperature biases. For high resolutions (10.2 m and 30.6 m), the average 

biases are particularly similar to the upscaled-output results. Coarser resolutions lose 

some of that similarity (in particular on 3rd September), but the overall comparison of the 

two datasets remains remarkable. Generally, low (absolute) biases can be attained with 

either of the upscaling approaches, as in both, the error-minimization calibration rationale 

is employed. 

 

Figure 10. Evolution of the model temperature bias (RET-LST) across different scales: average 

value (solid line) and standard deviation range (shaded area). 

3.4.2. Global Evapotranspiration 

The comparison between the two approaches is investigated also in terms of daily 

evapotranspiration, focusing on the main vineyard area. Figure 11 provides the absolute-

value results of this comparison in the left-hand column. The golden bar identifies the 

calibrated-model ET result for the native resolution; the green bar identifies the upscaled-

outputs approach result, whereas the orange one is the upscaled-inputs result. The UO 

and UI results are never equal, but they are fundamentally never far from each other. 

Varying on the days, the differences can be more or less marked, but the overall value is 

similar, with no clear over-estimation of one over the other. Furthermore, both values are 

generally in the vicinity of the daily ET computed at the highest resolution (the golden 

bar). This aspect is further investigated in the right-hand column of Figure 11, which dis-

plays the Relative Error (RE), for both approaches, between the ET valued at the coarser 

scale and the highest-resolution ET assumed to be the most accurate. The green line iden-

tifies the UO approach again, and shows an error increasing monotonously and coher-

ently with the simple averaging method at its origin. The line for the 3rd July, although 

seemingly constant at the null value, presents non-null errors, poorly distinguishable as 

always below 1%. The orange line represents the UI results, with a more erratic scale evo-

lution, as already seen in Figure 10 for the independent calibrations. The RE data are use-

ful because of the limited variability of the ET values, which hinders a clear understanding 

of the possible error. The results shown confirm this assumption, as non-negligible errors 
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as high as ±30% can be detected. Generally, UI errors are higher than those of UO, but, 

being subject to calibration, can be even lower (as is the case for the 734.4 m scale in the 

11th Jun and 3rd Sep dates). While UO, by construction of the simple averaging methods, 

is monotonically increasing, UI has no pre-defined behavior. 

 

Figure 11. Average daily ET of the main experimental area for some of the test days. In the left-hand 

column, absolute-value comparisons between the upscaling approaches and the native-resolution 

value. In the right-hand column, Relative Errors (RE) with respect to the highest-resolution ET. 

Given the nature of the scale analysis, further insight into the effects of spatial reso-

lution over model application can be obtained by analyzing the spatial distribution, in-

stead of the average value, of ET. Figure 12 shows the different ET spatial distributions 

across the four scales of our analysis, for the example date of 11th June and comparing 

both scaling approaches. For the 10.2 m scale step, little differences can be detected, in line 

with the average value featured in Figure 11. The pattern of slightly higher ET in the east-

ern half of the vineyard is visible in both approaches, while the western half shows some 

discrepancies between the two. In the shift towards the 30.6 m step, the different calibra-

tion of the UI approach is quite evident (as foretold by the higher average value in Figure 

11), although spatial patterns start to fade out. The low-ET roads surrounding the vine-

yard are clearly distinguishable in both approaches, as the empty fields are directly north 

and south of the main vineyard area. Finally, in the 244.8 m step, both approaches seem 

to converge to similar values for the pixels involving the main vineyard area, as the 

lumped nature of pixels at this coarse spatial resolution flattens out most singularities in 

the target area. 
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Figure 12. Spatial distribution of ET across the different scales (columns) and both scaling ap-

proaches (UO for the upper row and UI for the lower). Data about the example date of 11th June. 

4. Discussion 

Numerous doubts regarding the scale issues with energy fluxes involve the common 

assumption of pixel homogeneity in most surface energy balance models [31]. These con-

cerns revolve around the modelling of non-linearities, which do not cope well with the 

(often) linear aggregation processes. Non-linearities are all the more evident for heteroge-

neous pixels. Again, [31] focused on the dependency of modelling roughness lengths 

(used to compute aerodynamic resistances) on spatial resolution, postulating that all mod-

els following the Monin–Obukhov Similarity Theory (MOST) face this challenge. 

The scale analysis shown in this study aims at testing the FEST-EWB sensitivity to 

modelling non-linearities across common spatial resolutions for a remote sensing product. 

Two approaches are contrasted: aggregating model results obtained at high resolution 

(Upscaled Outputs approach, or “UO”); aggregating model inputs before calibrating the 

model anew (Upscaled Inputs approach, or “UI”). Faced with this double approach, the 

FEST-EWB model has shown consistent results. 

In the calibration phase (Figure 10), the temperatures are comparable between the 

two approaches. The calibration process, employing the same calibration functions for 

both approaches, was demonstrated to be only slightly hampered by the spatial resolu-

tion. This is all the more impressive provided the loss in spatial information brought on 

by the upscaling process, both in the actual results for UO and in the input data for UI, as 

testified by Table 6. Although data inputs become up to three-fourths less diverse, the 

model still manages, with the appropriate calibration, to provide low temperature biases. 

The aggregated fluxes (Figure 9) reflect this decreased data diversity with less heteroge-

neous UI latent and sensible heats with respect to their UO counterparts. 

To provide an operative estimate for the model performance in coarser-resolution 

scenarios, ET global estimates for the vineyard area are computed with both approaches 

and compared to their high-resolution counterparts. This adaptation is detailed in Figure 

11, with the two different scale evolutions for the UO and UI results. While the simple 

averaging approach provides a monotonous relative error increase in the UO scenario, the 

independent calibrations set a more erratic error distribution for the UI approach. Clearly, 

the UI errors appear overall higher than the UO ones, in agreement with [37]. They found 

that ET was better preserved with output upscaling than with input upscaling, as in the 

former case the coarser-scale ET relative error reached, at most, 28%, whereas in the latter 

it stretched just above 40%. The results of input upscaling for their work was obtained for 

a model (SEBS) which did not require calibration; probably for this reason, the upscaled-

input ET showed a monotonously increasing error which is not the case for this study, as 

shown in Figure 11. The overall error values are, however, in tune with what was found 

in this study. 
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Some further considerations are due for the UI results shown in Figure 11. As the 

model is subject to a new calibration for each scale, low errors are theoretically possible 

even for coarse resolution, which is not the case for the UO results. However, as scales 

progress, fewer and fewer pixels cover the same area; in this case, only 1 pixel for the 734.4 

m scale and 9 for the 244.8 m one. Fewer available pixels dramatically hinder the perks of 

employing a distributed hydrological model, as less parameter values can be tuned dur-

ing the calibration process. Thus, while low relative errors are theoretically possible for 

coarse scales in the UI approach—as for the 11th Jun and 3rd Sep dates in this case, for the 

734.4 m scale—the calibration process can provide worse results, as is the case for the 244.8 

m scale. 

Finally, some positive insights of high resolution data can be gathered by the ET spa-

tial patterns shown in Figure 12. The differences between the two scaling approaches seem 

quite in line with those of the averaged values discussed above. This is particularly true 

for the highest resolution of the scale analysis (10.2 m), the closest to the native resolution. 

As scales progress, some discrepancies emerge between the approaches, in particular for 

the medium-range spatial resolution (30.6 m), while coarser resolutions seem less affected. 

This is in line with the fact that 30.6 m is a critical resolution value not high enough to 

encompass large field portions (like 244.8 m) and not low enough to clearly distinguish 

the main features of the field (such as the bare-soil paths within the vineyard area, clearly 

visible at 10.2 m). In such mid-range resolutions, the model does seem to struggle in cap-

turing the heterogeneity of the different contributions to the global ET. 

5. Conclusions 

The main focus of the analysis presented here is to evaluate the effect of spatial reso-

lution on hydrological modelling when analyzing a particularly complex and heterogene-

ous area such as a vineyard. After the calibration of the FEST-EWB distributed hydrolog-

ical model (at high resolution), a two-fold approach has been adopted: coarse-resolution 

temperature and evapotranspiration results of the model have been compared when ei-

ther (a) obtained from a simple aggregation of high-resolution model results or (b) pro-

vided by the model following independent calibrations performed directly at the target 

scale. The reason for such a comparison was to determine how the model performed when 

employed in heterogeneous areas and with a low resolution. In particular, two main driv-

ing questions were: (i) does the model require high-resolution data to positively interpret 

heterogeneous areas, and (ii) can a high-resolution calibration help the model in interpret-

ing low-resolution data? 

Strikingly similar surface temperature distributions between output- and input-ag-

gregated model runs prove that similar results can be obtained by the model inde-

pendently of the input data resolution. This result markedly testifies to the model’s own 

robust adaptability to high-heterogeneity scenarios. A further insight is brought on by the 

ET results. Apart from minor differences, the global evapotranspiration of the vineyard is 

practically the same, whether it is computed from aggregated high-resolution data or low-

resolution information. However, looking at relative errors, some discrepancies between 

the two approaches can emerge, linked to the difficulties of a distributed model calibration 

with few available pixels (as is the case for the coarser resolutions). An analysis of the ET 

spatial patterns reveals good adaptation for the highest resolution, while some difficulties 

emerge from mid-range resolutions, where surface singularities start to be mingled with 

the main vineyard pattern. 

The overall flexibility of the model allows to obtain good ET estimates even employ-

ing low-resolution data, which are commonly more economic and easier to retrieve. From 

an agricultural water management perspective, this means being able to enforce a contin-

uous and accurate control over the crop with moderate costs. However, spatial resolution 

of the available data is still a key parameter towards the final profitability of the results, 

with intermediate-resolution pixels appearing to cause the most issues. 
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Possible future developments of this study include: (a) performing a continuous, 

long-running simulation, in order to assess the amount of error propagation at the differ-

ent scales; (b) testing the model performance and the analysis approach over different 

fields, both in terms of crop pattern and of boundary meteorological conditions; (c) 

stretching the limits of the scale analysis, by employing both higher (below 1 m, using 

UAVs or remote sensing data, e.g., from the DigitalGlobe constellation) and lower (above 

1 km, although a larger field would be required to minimize disturbances from nearby 

areas) resolutions. 
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Appendix A 

The images acquired by the Duncantech camera were affected by radiometric inho-

mogeneity including vignetting [59,60] and additional distortions due to the combined 

effects of the optical prism and the coating treatment on the faces, besides the sensitivity 

and response of the sensor. Radiometric correction factors for the three spectral bands 

were determined by carrying out laboratory measurements with an integrating sphere, an 

Extended Range Lamp (EKE-ER) and an ASD Hi-Res Fieldspec spectroradiometer, and 

are detailed in Figure A1. 

 

 

 

(a) (b) (c) 

Figure A1. Correction factors for: (a) the NIR, (b) R and (c) G bands. 

Minimum (min), maximum (max), range of variability (range) and mean statistics 

characterizing the correction factors images were: for the NIR band: min–max: 0. 9259–

2.2371 (range: 1.3112), mean: 1.2157; for the red band: min–max: 0.6047–1.3787 (range: 
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0.7740), mean: 0.8750; and for the green band: min–max: 0.7178–1.4318 (range: 0.7141), 

mean: 1.0157. 

Images were, then, converted in spectral radiance (W m−2 sr−1 nm−1) by applying the 

following gains and offsets (Table A1). 

Table A1. Radiometric calibration factors 

Spectral Band Gain Offset 

NIR 0.0012674 0.0003235 

R 0.0010316 −0.0010287 

G 0.0004399 −0.0009141 

Spectral radiance at airborne altitude were finally calibrated into reflectance at the ground by 

applying the Empirical Line Method [61]. Analogously, thermal images were calibrated into surface 

temperature at ground by applying the Emissive Empirical Line Method [62]. 

Appendix B 

The digital elevation model (DEM) was obtained by interpolation of orthometric 

GNSS altitude data both from Glonass (Global’naja Navigacionnaja Sputnikovaja Sistema) 

and GPS (Global Positioning System). 

A simple Differential GPS (DGPS) provided position solutions with accuracies com-

parable to the spatial resolution of the images (≈2 m). The wide area augmentation (sys-

tem) European Geostationary Navigation Overlay Service, WAAS EGNOS, provided, 

along with DGPS corrections, data integrity information. 

Satellites geometric configuration with respect to receiver affects the quality of the 

measurements. Indicators of the Dilution Of Precision (DOP) are reported in Table A2 

(non-dimensional units): the Horizontal DOP (HDOP) to assess the quality of precision in 

the planimetric component, the Vertical DOP (VDOP) for expected precision on the ele-

vation component, the Positional DOP (PDOP) combining both the planimetric and verti-

cal precisions and the Geometric DOP (GDOP) accounting also for the fourth dimension 

(time). 

Table A2. DOP indicators of the GNSS data. 

Statistic HDOP VDOP PDOP GDOP 

Mean 0.368 0.498 2.116 2.437 

Min 0.058 0.078 1.468 1.625 

Max 5.770 4.922 13.542 16.961 

Dev.st. 0.222 0.303 0.584 0.741 

Solutions with a value of DOP higher than 5 were removed from the database, for a total of 9 posi-

tions, resulting in 2082 useful positions. 

According to the classification from [63], measured DOPS can be rated on the average 

as ideal (HDOP and VDOP < 1) or good (PDOP and GDOP < 5). We considered the posi-

tional measurements accurate enough to produce a digital terrain model to be employed 

in the energy and mass models. 

To interpolate the altitude values, three experimental variograms were computed 

(Surfer 8 by Golden Software, LLC) by setting a maximum lag distance of 350 m (Figure 

A2) and applying a radius of 350 m during the gridding phase. All theoretical semi-vari-

ograms (blue lines) were calibrated by fitting the empirical variogram (black line with 

dots) with a simple weighted least squares method that minimizes the sum of the square 

of the errors [64]. After fitting the empirical semi-variogram, it was possible to customize 

an Ordinary Point Kriging algorithm [64] to interpolate the orthometric altitudes over the 

area at the same spatial resolution of the thermal data. Univariate Cross-Validation Statis-

tics of the residual altitude Z (m) were, then, calculated to evaluate the accuracy of the 

digital elevation model. 
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Firstly, a theoretical variogram was obtained by selecting power [65] and wave (hole 

effect) [66] variogram components (Figure A2a). It resulted for the power component in 

the following scale, length and power parameters (0.012, 6 and 2, respectively), while the 

wave component was characterized by the following scale and length parameters (90 and 

60, respectively). Residual errors for altitude were characterized by a mode value close to 

0.02 m, with 25th, 50th and 75th percentiles around −0.06, 0.02 (as the mode) and 0.27 m, 

respectively (Table A3). A Gaussian empirical variogram was also employed (Figure A2b) 

[66], with resulting scale and length parameters of 286 and 425, respectively. After grid-

ding, its residual errors were characterized by a mode value of ≈0.12 m, with −0.21, 0.04 

and 0.27 m as 25th, 50th and 75th percentiles. Finally, a Rational quadratic model (Figure 

A2c) [64] was used, with scale and length parameters of 463 and 575, respectively. The 

residual errors had a similar mode of ≈0.12 m with the percentiles at −0.17, 0.04 and 0.23 

m (Table A3). The results across all variograms were similar, as the highest relevance 

within the variogram lays in the very first part: according to Morgano [67], “the most im-

portant aspect of the fitted semi-variogram model is the nugget-effect and the slope near 

the origin”, while Armstrong [68] reports that the behavior of the semi-variogram at and 

near the origin significantly influences kriging results. 

For all the tested gridding strategies, residuals were much lower than the range of 

variability of the DEM (≈255 m). Smallest absolute values for mode, 25th and 50th percen-

tiles were obtained by using the power and wave (hole effect) components, while the 

smallest absolute 75th percentile was obtained with the rational quadratic model. Thus, 

the power and wave (hole effect) variogram components were those chosen to produce 

the final Digital Elevation Model employed in the analysis. 

   

(a) (b) (c) 

Figure A2. Theoretical variogram (blue line) calibrated by fitting the empirical variogram (black line with dots): (a) power 

and wave (hole effect) components, (b) Gaussian model and (c) rational quadratic model. 

Table A3. Statistics of the residual errors of the tested variogram components. 

Variogram Component(s) 
Residual Errors for Altitude [m] 

Mode 25th Percentile 50th Percentile 75th Percentile 

Power and wave (hole effect) 0.025 −0.064 0.025 0.274 
Gaussian 0.122 −0.207 0.044 0.270 

Rationale quadratic 0.124 −0.172 0.042 0.226 

Appendix C 

The energy balance closure for the eddy covariance measurement is portrayed in Figure A3, 

where each point refers to the available (Rn-G) and turbulent (L + H) energy at a given time. Data 

from 22nd August refers only to the 09:30–21:30 (local time) period, as data for the rest of the day 

was unavailable due to a malfunctioning of the instrument. For each date, both the angular coeffi-

cient of the linear interpolation (m) and the data dispersion value (R2) are provided. Generally, the 

data dispersion seems consistent with a slight shift between the different components of the energy 

balance as measured by the eddy covariance station. 
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Figure A3. Energy balance closure check for the eddy covariance data on the four available dates. 

Turbulent energy (L + H) against Available energy (Rn–G). 
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