30 research outputs found

    Binap-silver-catalyzed enantioselective multicomponent 1,3-dipolar cycloaddition of azomethines ylides derived from ethyl glyoxylate

    Get PDF
    The enantioselective binap–silver catalyzed multicomponent 1,3-dipolar cycloaddition using ethyl glyoxylate, phenylalanine ethyl ester, and maleimides is described. The employment of basic silver carbonate allows the reaction to take place in the absence of an extra base giving high yields and ee. In addition, low-level calculations regarding the importance of the benzyl substituent at the α-position of the amino ester justify the expected absolute configuration of the final cycloadducts and the observed high enantiodiscrimination.Financial support was provided by the Spanish Ministerio de Ciencia e Innovación (MICINN) (projects CTQ2010-20387, and Consolider Ingenio 2010, CSD2007-00006), the Spanish Ministerio de Economía y Competitividad (MINECO) (projects CTQ2013-43446-P, and CTQ2014-51912-REDC), FEDER, the Generalitat Valenciana (PROMETEO 2009/039 and PROMETEOII/2014/017), and the University of Alicante

    Terminal Alkynes Hydroamination Catalyzed by Copper Nanoparticles

    Get PDF
    The copper-catalyzed regioselective intermolecular hydroamination of terminal alkynes with amines was accomplished. The reaction was catalyzed by copper nanoparticles supported on montmorillonite K10 (CuNPs/MK10) and afforded the desired imines in good conversions. Then, imines were transformed into the corresponding amines after treatment with NaBH3CN. The catalyst could be recovered and reutilized in several cycles.Fil: Mancebo Aracil, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Alonso, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Radivoy, Gabriel Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentin

    The Chemistry behind Catechol-Based Adhesion

    Get PDF
    The adhesion of some marine organisms to almost any kind of surface in wet conditions has aroused increasing interest in recent decades. Numerous fundamental studies have been performed to understand the scientific basis of this behaviour, with catechols having been found to play a key role. Several novel bio-inspired adhesives and coatings with value-added performances have been developed by taking advantage of the knowledge gained from these studies. To date there has been no detailed overview focusing exclusively on the complex mode of action of these materials. The aim of this Review is to present recent investigations that elucidate the origin of the strong and versatile adsorption capacities of the catechol moiety and the effects of extrinsic factors that play important roles in the overall adhesion process, such as pH value, solvent, and the presence of metal ions. The aim is to detail the chemistry behind the astonishing properties of natural and synthetic catechol-based adhesive materials.Fil: Saiz Poseu, javier. Institut Catala de Nanociencia I Nanotecnologia;Fil: Mancebo, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Nador, Fabiana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Busque, Felix. Universitat Autònoma de Barcelona; EspañaFil: Ruiz-Molina, Daniel. Institut Catala de Nanociencia I Nanotecnologia

    Silver-catalysed multicomponent 1,3-dipolar cycloaddition of 2-oxoaldehydes-derived azomethine ylides

    Get PDF
    The silver-catalysed multicomponent reaction between ethyl glyoxylate, 2,2-dimethoxyacetaldehyde, or phenylglyoxal as aldehyde components with a α-amino ester hydrochloride and a dipolarophile in the presence of triethylamine is described. This domino process takes place at room temperature by in situ liberation of the α-amino ester followed by the formation of the imino ester, which is the precursor of a metalloazomethine ylide. The cycloaddition of this species and the corresponding dipolarophile affords polysubstituted proline derivatives. Ethyl glyoxylate reacts with glycinate, alaninate, phenylalaninate and phenylglycinate at room temperature in the presence of representative dipolarophiles affording endo-2,5-cis-cycloadducts in good yields and high diastereoselection. In addition, 2,2-dimethoxyacetaldehyde is evaluated with the same amino esters and dipolarophiles, under the same mild conditions, generating the corresponding endo-2,5-cis-cycloadducts with higher diastereoselections than the obtained in the same reactions using ethyl glyoxylate. In the case of phenylglyoxal the corresponding 5-benzoyl-endo-2,5-cis cycloadducts are obtained in short reaction times and similar diasteroselection.The Spanish Ministerio de Ciencia e Innovación (MICINN) (projects CTQ2010-20387, and Consolider Ingenio 2010, CSD2007-00006), the Spanish Ministerio de Economía y Competitividad (MINECO) (projects CTQ2013-43446-P and CTQ2014-51912-REDC), FEDER, the Generalitat Valenciana (PROMETEO 2009/039 and PROMETEOII/2014/017), and the University of Alicante

    Mussel-Inspired Lego Approach for Controlling the Wettability of Surfaces with Colorless Coatings

    Get PDF
    The control of surface wettability with polyphenol coatings has been at the forefront of materials research since the late 1990s, when robust underwater adhesion was linked to the presence of L-DOPA—a catecholic amino acid—in unusually high amounts, in the sequences of several mussel foot proteins. Since then, several successful approaches have been reported, although a common undesired feature of most of them is the presence of a remnant color and/or the intrinsic difficulty in fine-tuning and controlling the hydrophobic character. We report here a new family of functional catechol-based coatings, grounded in the oxidative condensation of readily available pyrocatechol and thiol-capped functional moieties. The presence of at least two additional thiol groups in their structure allows for polymerization through the formation of disulfide bonds. The synthetic flexibility, together with its modular character, allowed us to: (I) develop coatings with applications exemplified by textiles for oil-spill water treatment; (II) develop multifunctional coatings, and (III) fine-tune the WCA for flat and textile surfaces. All of this was achieved with the application of colorless coatings.Fil: Casagualda, Carolina. Universitat Autònoma de Barcelona; EspañaFil: Mancebo Aracil, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina. Universitat Autònoma de Barcelona; EspañaFil: Moreno Villaecija, Miguel Angel. Universitat Autònoma de Barcelona; EspañaFil: López Moral, Alba. Universitat Autònoma de Barcelona; EspañaFil: Alibés, Ramon. Universitat Autònoma de Barcelona; EspañaFil: Busqué, Félix. Universitat Autònoma de Barcelona; EspañaFil: Ruiz Molina, Daniel. Universitat Autònoma de Barcelona; Españ

    Mussel-inspired lego approach for controlling the wettability of surfaces with colorless coatings

    Get PDF
    The control of surface wettability with polyphenol coatings has been at the forefront of materials research since the late 1990s, when robust underwater adhesion was linked to the presence of L-DOPA-a catecholic amino acid-in unusually high amounts, in the sequences of several mussel foot proteins. Since then, several successful approaches have been reported, although a common undesired feature of most of them is the presence of a remnant color and/or the intrinsic difficulty in fine-tuning and controlling the hydrophobic character. We report here a new family of functional catechol-based coatings, grounded in the oxidative condensation of readily available pyrocatechol and thiol-capped functional moieties. The presence of at least two additional thiol groups in their structure allows for polymerization through the formation of disulfide bonds. The synthetic flexibility, together with its modular character, allowed us to: (I) develop coatings with applications exemplified by textiles for oil-spill water treatment; (II) develop multifunctional coatings, and (III) fine-tune the WCA for flat and textile surfaces. All of this was achieved with the application of colorless coating

    Synthesis of pharmacophores containing a prolinate core using a multicomponent 1,3-dipolar cycloaddition of azomethine ylides

    Get PDF
    A multicomponent 1,3-dipolar cycloaddition between heterocyclic aldehydes, amino esters and dipolarophiles is efficiently promoted by silver acetate as catalyst, and depending on the nature of the heterocycle and its reactivity the reaction requires 70 °C or rt to complete. Selected pharmacophores anchored to a formyl group are chromone, 5-methoxyindole, pyridoxal surrogates and a very attractive uracyl derivative. The preference of each tested amino esters towards different dipolarophiles is discussed. At the end, a selective reduction of the ester group allows to obtain a very interesting dideoxiazanucleoside derivative.We gratefully acknowledge financial support from the Spanish Ministerio de Ciencia e Innovación (MICINN) (projects CTQ2010-20387 and Consolider Ingenio 2010, CSD2007-00006), the Spanish Ministerio de Economía y Competitividad (MINECO) (projects CTQ2013-43446-P and CTQ2014-51912-REDC), the Spanish Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (projects CTQ2016-76782-P and CTQ2016-81797-REDC), the Generalitat Valenciana (PROMETEO2009/039 and PROMETEOII/2014/017), the University of Alicante and Medalchemy S. L. E. Selva thanks Univerisdad de Alicante and Medalchemy S. L. for a predoctoral fellowship

    Dual chiral silver catalyst in the synthetic approach to the core of hepatitis C virus inhibitor GSK 625433 using enantioselective 1,3-dipolar cycloaddition of azomethine ylides and electrophilic alkenes

    Get PDF
    The asymmetric 1,3-dipolar cycloaddition of an imino ester 5 with tert-butyl acrylate is catalyzed by a dual chiral silver(I) complex formed from a chiral phosphoramidite 14 and the chiral silver(I) binolphosphate (R)-17. This reaction is selected to achieve the synthesis of enantiomerically enriched key structures to access the third generation of GSK HCV inhibitors. The scope of this dual chiral catalytic system is analyzed by employing different imino esters and dipolarophiles, and also compared with the same cycloaddition reactions performed with the chiral phosphoramidite 14·AgClO4 complex.Financial support was provided by the Spanish Ministerio de Ciencia e Innovación (MICINN) (projects CTQ2010-20387, and Consolider Ingenio 2010, CSD2007-00006), the Spanish Ministerio de Economía y Competitividad (MINECO) (projects CTQ2013-43446-P and CTQ2014-51912-REDC), the Spanish Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER, EU) (projects CTQ2016-76782-P and CTQ2016-81797-REDC), the Generalitat Valenciana (PROMETEO 2009/039 and PROMETEOII/2014/017), and the University of Alicante

    Bioinspired Functional Catechol Derivatives through Simple Thiol Conjugate Addition

    Get PDF
    The combination of the surface-adhesive properties of catechol rings and functional moieties conveying specific properties is very appealing to materials chemistry, but the preparation of catechol derivatives often requires elaborate synthetic routes to circumvent the intrinsic reactivity of the catechol ring. In this work, functional catechols are synthesized straightforwardly by using the bioinspired reaction of several functional thiols with o-benzoquinone. With one exception, the conjugated addition of the thiol takes place regioselectively at the 3-position of the quinone, and is rationalized by DFT calculations. Overall, this synthetic methodology provides a general and straightforward access to functional and chain-extended catechol derivatives, which are later tested with regard to their hydro-/oleophobicity, colloidal stability, fluorescence, and metal-coordinating capabilities in proof-of-concept applications

    Regio and diastereoselective multicomponent 1,3-dipolar cycloadditions between prolinate hydrochlorides, aldehydes and dipolarophiles for the direct synthesis of pyrrolizidines

    Get PDF
    A general synthesis of highly substituted pyrrolizidines can be performed by a multicomponent 1,3-dipolar cycloaddition using proline ester hydrochlorides, aldehydes and dipolarophiles, at room temperature without catalysts or in the presence of AgOAc (5 mol %). In the case of (2S,4R)-4-hydroxyproline derivatives it is possible to obtain enantioenriched pyrrolizidines with high control of the regio- and diastereoselectivity affording the adducts 2,4-trans-2,5-trans according to an endo-approach and a S-dipole geometry of the in situ generated azomethine ylide. For proline esters a similar regioselectivity and endo-diastereoselectivity are observed when the dipole promotes an α-attack. However, when ethyl glyoxylate is used as aldehyde component the γ-attack of the S-ylide takes place preferentially giving rise the opposite regioselectivity for acrylic dipolarophiles, being crucial the role of silver acetate. In this case, the exo-adducts with a 2,3-cis-2,5-trans relative configuration are diastereoselectively obtained. In addition, computational studies have also been carried out to shed light on the origins of the diastereo- and regioselectivity observed for the described 1,3-dipolar cycloadditions.The Spanish Ministerio de Ciencia e Innovación (MICINN) (projects CTQ2010-20387, and Consolider Ingenio 2010, CSD2007-00006), the Spanish Ministerio de Economia y Competitividad (MINECO) (projects CTQ2013-43446-P and CTQ2014-51912-REDC), FEDER, the Generalitat Valenciana (PROMETEO 2009/039 and PROMETEOII/2014/017), and the University of Alicante. L. C. M. thanks Spanish Government for a fellowship
    corecore