11,687 research outputs found
Improving chronic disease prevention and screening in primary care: results of the BETTER pragmatic cluster randomized controlled trial.
BackgroundPrimary care provides most of the evidence-based chronic disease prevention and screening services offered by the healthcare system. However, there remains a gap between recommended preventive services and actual practice. This trial (the BETTER Trial) aimed to improve preventive care of heart disease, diabetes, colorectal, breast and cervical cancers, and relevant lifestyle factors through a practice facilitation intervention set in primary care.MethodsPragmatic two-way factorial cluster RCT with Primary Care Physicians' practices as the unit of allocation and individual patients as the unit of analysis. The setting was urban Primary Care Team practices in two Canadian provinces. Eight Primary Care Team practices were randomly assigned to receive the practice-level intervention or wait-list control; 4 physicians in each team (32 physicians) were randomly assigned to receive the patient-level intervention or wait-list control. Patients randomly selected from physicians' rosters were stratified into two groups: 1) general and 2) moderate mental illness. The interventions involved a multifaceted, evidence-based, tailored practice-level intervention with a Practice Facilitator, and a patient-level intervention involving a one-hour visit with a Prevention Practitioner where patients received a tailored 'prevention prescription'. The primary outcome was a composite Summary Quality Index of 28 evidence-based chronic disease prevention and screening actions with pre-defined targets, expressed as the ratio of eligible actions at baseline that were met at follow-up. A cost-effectiveness analysis was conducted.Results789 of 1,260 (63%) eligible patients participated. On average, patients were eligible for 8.96 (SD 3.2) actions at baseline. In the adjusted analysis, control patients met 23.1% (95% CI: 19.2% to 27.1%) of target actions, compared to 28.5% (95% CI: 20.9% to 36.0%) receiving the practice-level intervention, 55.6% (95% CI: 49.0% to 62.1%) receiving the patient-level intervention, and 58.9% (95% CI: 54.7% to 63.1%) receiving both practice- and patient-level interventions (patient-level intervention versus control, P < 0.001). The benefit of the patient-level intervention was seen in both strata. The extra cost of the intervention was 16 to $44) per additional action met.ConclusionsA Prevention Practitioner can improve the implementation of clinically important prevention and screening for chronic diseases in a cost-effective manner
Epitaxial growth and thermodynamic stability of SrIrO3/SrTiO3 heterostructures
Obtaining high-quality thin films of 5d transition metal oxides is essential
to explore the exotic semimetallic and topological phases predicted to arise
from the combination of strong electron correlations and spin-orbit coupling.
Here, we show that the transport properties of SrIrO3 thin films, grown by
pulsed laser deposition, can be optimized by considering the effect of
laser-induced modification of the SrIrO3 target surface. We further demonstrate
that bare SrIrO3 thin films are subject to degradation in air and are highly
sensitive to lithographic processing. A crystalline SrTiO3 cap layer deposited
in-situ is effective in preserving the film quality, allowing us to measure
metallic transport behavior in films with thicknesses down to 4 unit cells. In
addition, the SrTiO3 encapsulation enables the fabrication of devices such as
Hall bars without altering the film properties, allowing precise
(magneto)transport measurements on micro- and nanoscale devices.Comment: 5 pages, 3 figure
Measurement of the time resolution of the installed muon chambers with the 2008 cosmic runs
One of the main goals of the LHCb muon system commissioning is to access the detector performance and identify possible misbehaviors in the installed chambers: this is partially possible using cosmic ray muons tracked through the detector. In this note we focus on the measurement of the time resolution of the whole installed detector (M2-M5 stations) using the 2008 commissioning data. Results are compared with the expected performances
Exciton states in monolayer MoSe2 and MoTe2 probed by upconversion spectroscopy
Transitions metal dichalcogenides (TMDs) are direct semiconductors in the
atomic monolayer (ML) limit with fascinating optical and spin-valley
properties. The strong optical absorption of up to 20 % for a single ML is
governed by excitons, electron-hole pairs bound by Coulomb attraction. Excited
exciton states in MoSe and MoTe monolayers have so far been elusive due
to their low oscillator strength and strong inhomogeneous broadening. Here we
show that encapsulation in hexagonal boron nitride results in emission line
width of the A:1 exciton below 1.5 meV and 3 meV in our MoSe and
MoTe monolayer samples, respectively. This allows us to investigate the
excited exciton states by photoluminescence upconversion spectroscopy for both
monolayer materials. The excitation laser is tuned into resonance with the
A:1 transition and we observe emission of excited exciton states up to 200
meV above the laser energy. We demonstrate bias control of the efficiency of
this non-linear optical process. At the origin of upconversion our model
calculations suggest an exciton-exciton (Auger) scattering mechanism specific
to TMD MLs involving an excited conduction band thus generating high energy
excitons with small wave-vectors. The optical transitions are further
investigated by white light reflectivity, photoluminescence excitation and
resonant Raman scattering confirming their origin as excited excitonic states
in monolayer thin semiconductors.Comment: 14 pages, 7 figures, main text and appendi
Anomalous relaxations and chemical trends at III-V nitride non-polar surfaces
Relaxations at nonpolar surfaces of III-V compounds result from a competition
between dehybridization and charge transfer. First principles calculations for
the (110) and (100) faces of zincblende and wurtzite AlN, GaN and InN
reveal an anomalous behavior as compared with ordinary III-V semiconductors.
Additional calculations for GaAs and ZnO suggest close analogies with the
latter. We interpret our results in terms of the larger ionicity (charge
asymmetry) and bonding strength (cohesive energy) in the nitrides with respect
to other III-V compounds, both essentially due to the strong valence potential
and absence of core states in the lighter anion. The same interpretation
applies to Zn II-VI compounds.Comment: RevTeX 7 pages, 8 figures included; also available at
http://kalix.dsf.unica.it/preprints/; improved after revie
Mucoadhesive solid lipid microparticles for controlled release of a corticosteroid in the chronic obstructive pulmonary disease treatment.
AIM:
Therapeutic efficacy of pulmonary diseases is often limited and drug delivery systems offer new solutions to clinical problems. Solid lipid microparticles (SLMs) are suggested as systems for the delivery of therapeutics to the lung as, because of their size, they are able to deposit into secondary bronchi.
MATERIALS & METHODS:
Here, we describe two novel different SLMs using chitosan and alginate such as mucoadhesive polymers and we also studied their biocompatibility and their effectiveness compared with the free drug in controlling senescence and inflammatory processes in cigarette smoke extracts.
RESULTS:
Data reported show that fluticasone propionate (FP)-loaded SLMs are more effective than FP alone in controlling oxidative stress.
CONCLUSION:
The therapeutic approach using FP-loaded microparticles could be a promising strategy for the treatment of the chronic inflammatory pulmonary diseases
On the Shear Instability in Relativistic Neutron Stars
We present new results on instabilities in rapidly and differentially
rotating neutron stars. We model the stars in full general relativity and
describe the stellar matter adopting a cold realistic equation of state based
on the unified SLy prescription. We provide evidence that rapidly and
differentially rotating stars that are below the expected threshold for the
dynamical bar-mode instability, beta_c = T/|W| ~ 0.25, do nevertheless develop
a shear instability on a dynamical timescale and for a wide range of values of
beta. This class of instability, which has so far been found only for small
values of beta and with very small growth rates, is therefore more generic than
previously found and potentially more effective in producing strong sources of
gravitational waves. Overall, our findings support the phenomenological
predictions made by Watts, Andersson and Jones on the nature of the low-T/|W|.Comment: 20 pages; accepted to the Classical and Quantum Gravity special issue
for MICRA200
- …
