375 research outputs found

    Scaling Separability Criterion: Application To Gaussian States

    Full text link
    We introduce examples of three- and four-mode entangled Gaussian mixed states that are not detected by the scaling and Peres-Horodecki separability criteria. The presented modification of the scaling criterion resolves this problem. Also it is shown that the new criterion reproduces the main features of the scaling pictures for different cases of entangled states, while the previous versions lead to completely different outcomes. This property of the presented scheme is evidence of its higher generality.Comment: 7 pages, 4 figure

    Inverse spin-s portrait and representation of qudit states by single probability vectors

    Full text link
    Using the tomographic probability representation of qudit states and the inverse spin-portrait method, we suggest a bijective map of the qudit density operator onto a single probability distribution. Within the framework of the approach proposed, any quantum spin-j state is associated with the (2j+1)(4j+1)-dimensional probability vector whose components are labeled by spin projections and points on the sphere. Such a vector has a clear physical meaning and can be relatively easily measured. Quantum states form a convex subset of the 2j(4j+3) simplex, with the boundary being illustrated for qubits (j=1/2) and qutrits (j=1). A relation to the (2j+1)^2- and (2j+1)(2j+2)-dimensional probability vectors is established in terms of spin-s portraits. We also address an auxiliary problem of the optimum reconstruction of qudit states, where the optimality implies a minimum relative error of the density matrix due to the errors in measured probabilities.Comment: 23 pages, 4 figures, PDF LaTeX, submitted to the Journal of Russian Laser Researc

    The nonlinear directional coupler. An analytic solution

    Full text link
    Linear and nonlinear directional couplers are currently used in fiber optics communications. They may also play a role in multiphoton approaches to quantum information processing if accurate control is obtained over the phases and polarizations of the signals at the output of the coupler. With this motivation, the constants of motion of the coupler equation are used to obtain an explicit analytical solution for the nonlinear coupler.Comment: 6 pages Late

    Probability representation and quantumness tests for qudits and two-mode light states

    Full text link
    Using tomographic-probability representation of spin states, quantum behavior of qudits is examined. For a general j-qudit state we propose an explicit formula of quantumness witnetness whose negative average value is incompatible with classical statistical model. Probability representations of quantum and classical (2j+1)-level systems are compared within the framework of quantumness tests. Trough employing Jordan-Schwinger map the method is extended to check quantumness of two-mode light states.Comment: 5 pages, 2 figures, PDFLaTeX, Contribution to the 11th International Conference on Squeezed States and Uncertainty Relations (ICSSUR'09), June 22-26, 2009, Olomouc, Czech Republi

    Symmetric informationally complete positive operator valued measure and probability representation of quantum mechanics

    Full text link
    Symmetric informationally complete positive operator valued measures (SIC-POVMs) are studied within the framework of the probability representation of quantum mechanics. A SIC-POVM is shown to be a special case of the probability representation. The problem of SIC-POVM existence is formulated in terms of symbols of operators associated with a star-product quantization scheme. We show that SIC-POVMs (if they do exist) must obey general rules of the star product, and, starting from this fact, we derive new relations on SIC-projectors. The case of qubits is considered in detail, in particular, the relation between the SIC probability representation and other probability representations is established, the connection with mutually unbiased bases is discussed, and comments to the Lie algebraic structure of SIC-POVMs are presented.Comment: 22 pages, 1 figure, LaTeX, partially presented at the Workshop "Nonlinearity and Coherence in Classical and Quantum Systems" held at the University "Federico II" in Naples, Italy on December 4, 2009 in honor of Prof. Margarita A. Man'ko in connection with her 70th birthday, minor misprints are corrected in the second versio

    Caldirola-Kanai Oscillator in Classical Formulation of Quantum Mechanics

    Full text link
    The quadrature distribution for the quantum damped oscillator is introduced in the framework of the formulation of quantum mechanics based on the tomography scheme. The probability distribution for the coherent and Fock states of the damped oscillator is expressed explicitly in terms of Gaussian and Hermite polynomials, correspondingly.Comment: LaTeX, 5 pages, 1 Postscript figure, Contribution to the VIII International Conference on Symmetry Methods in Physics, Dubna 1997, to be published in the Proceedings of the Conferenc

    Lyapunov exponent in quantum mechanics. A phase-space approach

    Get PDF
    Using the symplectic tomography map, both for the probability distributions in classical phase space and for the Wigner functions of its quantum counterpart, we discuss a notion of Lyapunov exponent for quantum dynamics. Because the marginal distributions, obtained by the tomography map, are always well defined probabilities, the correspondence between classical and quantum notions is very clear. Then we also obtain the corresponding expressions in Hilbert space. Some examples are worked out. Classical and quantum exponents are seen to coincide for local and non-local time-dependent quadratic potentials. For non-quadratic potentials classical and quantum exponents are different and some insight is obtained on the taming effect of quantum mechanics on classical chaos. A detailed analysis is made for the standard map. Providing an unambiguous extension of the notion of Lyapunov exponent to quantum mechnics, the method that is developed is also computationally efficient in obtaining analytical results for the Lyapunov exponent, both classical and quantum.Comment: 30 pages Late

    Qubit portrait of the photon-number tomogram and separability of two-mode light states

    Full text link
    In view of the photon-number tomograms of two-mode light states, using the qubit-portrait method for studying the probability distributions with infinite outputs, the separability and entanglement detection of the states are studied. Examples of entangled Gaussian state and Schr\"{o}dinger cat state are discussed.Comment: 20 pages, 6 figures, TeX file, to appear in Journal of Russian Laser Researc
    corecore