375 research outputs found
Scaling Separability Criterion: Application To Gaussian States
We introduce examples of three- and four-mode entangled Gaussian mixed states
that are not detected by the scaling and Peres-Horodecki separability criteria.
The presented modification of the scaling criterion resolves this problem. Also
it is shown that the new criterion reproduces the main features of the scaling
pictures for different cases of entangled states, while the previous versions
lead to completely different outcomes. This property of the presented scheme is
evidence of its higher generality.Comment: 7 pages, 4 figure
Inverse spin-s portrait and representation of qudit states by single probability vectors
Using the tomographic probability representation of qudit states and the
inverse spin-portrait method, we suggest a bijective map of the qudit density
operator onto a single probability distribution. Within the framework of the
approach proposed, any quantum spin-j state is associated with the
(2j+1)(4j+1)-dimensional probability vector whose components are labeled by
spin projections and points on the sphere. Such a vector has a clear physical
meaning and can be relatively easily measured. Quantum states form a convex
subset of the 2j(4j+3) simplex, with the boundary being illustrated for qubits
(j=1/2) and qutrits (j=1). A relation to the (2j+1)^2- and
(2j+1)(2j+2)-dimensional probability vectors is established in terms of spin-s
portraits. We also address an auxiliary problem of the optimum reconstruction
of qudit states, where the optimality implies a minimum relative error of the
density matrix due to the errors in measured probabilities.Comment: 23 pages, 4 figures, PDF LaTeX, submitted to the Journal of Russian
Laser Researc
The nonlinear directional coupler. An analytic solution
Linear and nonlinear directional couplers are currently used in fiber optics
communications. They may also play a role in multiphoton approaches to quantum
information processing if accurate control is obtained over the phases and
polarizations of the signals at the output of the coupler. With this
motivation, the constants of motion of the coupler equation are used to obtain
an explicit analytical solution for the nonlinear coupler.Comment: 6 pages Late
Probability representation and quantumness tests for qudits and two-mode light states
Using tomographic-probability representation of spin states, quantum behavior
of qudits is examined. For a general j-qudit state we propose an explicit
formula of quantumness witnetness whose negative average value is incompatible
with classical statistical model. Probability representations of quantum and
classical (2j+1)-level systems are compared within the framework of quantumness
tests. Trough employing Jordan-Schwinger map the method is extended to check
quantumness of two-mode light states.Comment: 5 pages, 2 figures, PDFLaTeX, Contribution to the 11th International
Conference on Squeezed States and Uncertainty Relations (ICSSUR'09), June
22-26, 2009, Olomouc, Czech Republi
Symmetric informationally complete positive operator valued measure and probability representation of quantum mechanics
Symmetric informationally complete positive operator valued measures
(SIC-POVMs) are studied within the framework of the probability representation
of quantum mechanics. A SIC-POVM is shown to be a special case of the
probability representation. The problem of SIC-POVM existence is formulated in
terms of symbols of operators associated with a star-product quantization
scheme. We show that SIC-POVMs (if they do exist) must obey general rules of
the star product, and, starting from this fact, we derive new relations on
SIC-projectors. The case of qubits is considered in detail, in particular, the
relation between the SIC probability representation and other probability
representations is established, the connection with mutually unbiased bases is
discussed, and comments to the Lie algebraic structure of SIC-POVMs are
presented.Comment: 22 pages, 1 figure, LaTeX, partially presented at the Workshop
"Nonlinearity and Coherence in Classical and Quantum Systems" held at the
University "Federico II" in Naples, Italy on December 4, 2009 in honor of
Prof. Margarita A. Man'ko in connection with her 70th birthday, minor
misprints are corrected in the second versio
Caldirola-Kanai Oscillator in Classical Formulation of Quantum Mechanics
The quadrature distribution for the quantum damped oscillator is introduced
in the framework of the formulation of quantum mechanics based on the
tomography scheme. The probability distribution for the coherent and Fock
states of the damped oscillator is expressed explicitly in terms of Gaussian
and Hermite polynomials, correspondingly.Comment: LaTeX, 5 pages, 1 Postscript figure, Contribution to the VIII
International Conference on Symmetry Methods in Physics, Dubna 1997, to be
published in the Proceedings of the Conferenc
Lyapunov exponent in quantum mechanics. A phase-space approach
Using the symplectic tomography map, both for the probability distributions
in classical phase space and for the Wigner functions of its quantum
counterpart, we discuss a notion of Lyapunov exponent for quantum dynamics.
Because the marginal distributions, obtained by the tomography map, are always
well defined probabilities, the correspondence between classical and quantum
notions is very clear. Then we also obtain the corresponding expressions in
Hilbert space. Some examples are worked out. Classical and quantum exponents
are seen to coincide for local and non-local time-dependent quadratic
potentials. For non-quadratic potentials classical and quantum exponents are
different and some insight is obtained on the taming effect of quantum
mechanics on classical chaos. A detailed analysis is made for the standard map.
Providing an unambiguous extension of the notion of Lyapunov exponent to
quantum mechnics, the method that is developed is also computationally
efficient in obtaining analytical results for the Lyapunov exponent, both
classical and quantum.Comment: 30 pages Late
Qubit portrait of the photon-number tomogram and separability of two-mode light states
In view of the photon-number tomograms of two-mode light states, using the
qubit-portrait method for studying the probability distributions with infinite
outputs, the separability and entanglement detection of the states are studied.
Examples of entangled Gaussian state and Schr\"{o}dinger cat state are
discussed.Comment: 20 pages, 6 figures, TeX file, to appear in Journal of Russian Laser
Researc
- …