64 research outputs found

    Laser surface treatment of polyamide and NiTi alloy and the effects on mesenchymal stem cell response

    Get PDF
    Mesenchymal stem cells (MSCs) are known to play important roles in development, post-natal growth, repair, and regeneration of mesenchymal tissues. What is more, surface treatments are widely reported to affect the biomimetic nature of materials. This paper will detail, discuss and compare laser surface treatment of polyamide (Polyamide 6,6), using a 60 W CO2 laser, and NiTi alloy, using a 100 W fiber laser, and the effects of these treatments on mesenchymal stem cell response. The surface morphology and composition of the polyamide and NiTi alloy were studied by scanning electron microscopy (SEM) and X-ray photoemission spectroscopy (XPS), respectively. MSC cell morphology cell counting and viability measurements were done by employing a haemocytometer and MTT colorimetric assay. The success of enhanced adhesion and spreading of the MSCs on each of the laser surface treated samples, when compared to as-received samples, is evidenced in this work

    Enhancement of Wear and Corrosion Resistance of Beta Titanium Alloy by Laser Technology

    Get PDF
    The relatively high elastic modulus coupled with the presence of toxic vanadium (V) in Ti6Al4V alloy has long been a concern in orthopaedic applications. To solve the problem, a variety of non-toxic and low modulus beta-titanium (beta-Ti) alloys have been developed. Among the beta-Ti alloy family, the quaternary Ti-Nb-Zr-Ta (TZNT) alloys have received the highest attention as a promising replacement for Ti6Al4V due to their lower elastic modulus and outstanding long term stability against corrosion in biological environments. However, the inferior wear resistance of TNZT is still a problem that must be resolved before commercialising in the orthopaedic market. In this work, a newly-developed laser surface treatment technique was employed to improve the surface properties of Ti-35.3Nb-7.3Zr-5.7Ta alloy. The surface microstructure and composition of the laser-treated TNZT surface were examined by grazing incidence x-ray diffraction (GI-XRD) and x-ray photoelectron spectroscopy (XPS). The wear and corrosion resistance were evaluated by pin-on-plate sliding test and anodic polarisation test in Hanks’ solution. The experimental results were compared with the untreated (or base) TNZT material. The research findings showed that the laser surface treatment technique reported in this work can effectively improve the wear and corrosion resistance of TNZT. The enhancement of such surface properties was due to the formation of a smooth and hard layer on the substrate surface. The laser-formed layer was metallurgically bonded to the substrate, and had no concern of coating delamination or peel-off.Acknowledgments The work described in this paper was supported by research grants from the Hong Kong Polytechnic University (G-YK36 and G-YM75), Hong Kong Special Administration Region, China, and the Queen’s University Belfast (Start-up Research Fund: D8201MAS), United Kingdom

    Педагогическое сопровождение детей старшего дошкольного возраста в процессе социального познания

    Get PDF
    b-type Ti-alloy is a promising biomedical implant material as it has a low Young’s modulus and is also known to have inferior surface hardness. Various surface treatments can be applied to enhance the surface hardness. Physical vapor deposition and chemical vapor deposition are two examples of this but these techniques have limitations such as poor interfacial adhesion and high distortion. Laser surface treatment is a relatively new surface modification method to enhance the surface hardness but its application is still not accepted by the industry. The major problem of this process involves surface melting which results in higher surface roughness after the laser surface treatment.This paper will report the results achieved by a 100W CW fiber laser for laser surface treatment without the surface being melted. Laser processing parameters were carefully selected so that the surface could be treated without surface melting and thus the surface finish of the component could be maintained. The surface and microstructural characteristics of the treated samples were examined using x-ray diffractometry, optical microscopy, three-dimensional surface profile and contact angle measurements, and nanoindentation test.The work described in this paper was supported by research grants (G-YK36 and G-YM75) from the Hong Kong Polytechnic University, Hong Kong Special Administration Region, China. The Ph.D. studentship of Chi-Ho Ng was supported by the University of Chester, UK

    Targeted next-generation sequencing on hirschsprung disease: A pilot study exploits DNA pooling

    Get PDF
    To adopt an efficient approach of identifying rare variants possibly related to Hirschsprung disease (HSCR), a pilot study was set up to evaluate the performance of a newly designed protocol for next generation targeted resquencing. In total, 20 Chinese HSCR patients and 20 Chinese sex-matched individuals with no HSCR were included, for which coding sequences (CDS) of 62 genes known to be in signaling pathways relevant to enteric nervous system development were selected for capture and sequencing. Blood DNAs from eight pools of five cases or controls were enriched by PCR-based RainDance technology (RDT) and then sequenced on a 454 FLX platform. As technical validation, five patients from case Pool-3 were also independently enriched by RDT, indexed with barcode and sequenced with sufficient coverage. Assessment for CDS single nucleotide variants showed DNA pooling performed well (specificity/sensitivity at 98.4%/83.7%) at the common variant level; but relatively worse (specificity/sensitivity at 65.5%/61.3%) at the rare variant level. Further Sanger sequencing only validated five out of 12 rare damaging variants likely involved in HSCR. Hence more improvement at variant detection and sequencing technology is needed to realize the potential of DNA pooling for large-scale resequencing projects. © 2014 John Wiley & Sons Ltd/University College London.postprin

    The psychophysiological effects of Tai-chi and exercise in residential Schizophrenic patients: a 3-arm randomized controlled trial

    Get PDF
    BACKGROUND: Patients with schizophrenia are characterized by high prevalence rates and chronicity that often leads to long-term institutionalization. Under the traditional medical model, treatment usually emphasizes the management of psychotic symptoms through medication, even though anti-psychotic drugs are associated with severe side effects, which can diminish patients’ physical and psychological well-being. Tai-chi, a mind-body exercise rooted in Eastern health philosophy, emphasizes the motor coordination and relaxation. With these potential benefits, a randomized controlled trial (RCT) is planned to investigate the effects of Tai-chi intervention on the cognitive and motor deficits characteristic of patients with schizophrenia. METHODS/DESIGN: A 3-arm RCT with waitlist control design will be used in this study. One hundred and fifty three participants will be randomized into (i) Tai-chi, (ii) exercise or (iii) waitlist control groups. Participants in both the Tai-chi and exercise groups will receive 12-weeks of specific intervention, in addition to the standard medication and care received by the waitlist control group. The exercise group will serve as a comparison, to delineate any unique benefits of Tai-chi that are independent of moderate aerobic exercise. All three groups will undergo three assessment phases: (i) at baseline, (ii) at 12 weeks (post-intervention), and (iii) at 24 weeks (maintenance). All participants will be assessed in terms of symptom management, motor coordination, memory, daily living function, and stress levels based on self-perceived responses and a physiological marker. DISCUSSION: Based on a promising pilot study conducted prior to this RCT, subjects in the Tai-chi intervention group are expected to be protected against deterioration of motor coordination and interpersonal functioning. They are also expected to have better symptoms management and lower stress level than the other treatment groups. TRIAL REGISTRATION: The trail has been registered in the Clinical Trials Center of the University of Hong Kong (HKCTR-1453)

    Fine Mapping of the NRG1 Hirschsprung's Disease Locus

    Get PDF
    The primary pathology of Hirschsprung's disease (HSCR, colon aganglionosis) is the absence of ganglia in variable lengths of the hindgut, resulting in functional obstruction. HSCR is attributed to a failure of migration of the enteric ganglion precursors along the developing gut. RET is a key regulator of the development of the enteric nervous system (ENS) and the major HSCR-causing gene. Yet the reduced penetrance of RET DNA HSCR-associated variants together with the phenotypic variability suggest the involvement of additional genes in the disease. Through a genome-wide association study, we uncovered a ∼350 kb HSCR-associated region encompassing part of the neuregulin-1 gene (NRG1). To identify the causal NRG1 variants contributing to HSCR, we genotyped 243 SNPs variants on 343 ethnic Chinese HSCR patients and 359 controls. Genotype analysis coupled with imputation narrowed down the HSCR-associated region to 21 kb, with four of the most associated SNPs (rs10088313, rs10094655, rs4624987, and rs3884552) mapping to the NRG1 promoter. We investigated whether there was correlation between the genotype at the rs10088313 locus and the amount of NRG1 expressed in human gut tissues (40 patients and 21 controls) and found differences in expression as a function of genotype. We also found significant differences in NRG1 expression levels between diseased and control individuals bearing the same rs10088313 risk genotype. This indicates that the effects of NRG1 common variants are likely to depend on other alleles or epigenetic factors present in the patients and would account for the variability in the genetic predisposition to HSCR
    corecore