160 research outputs found
Long-term responders to trastuzumab monotherapy in first-line HER-2+ advanced breast cancer: characteristics and survival data.
The impact of HER2-targeted therapy alone followed by the addition of chemotherapy at disease progression (PD) versus upfront combination was investigated by the SAKK 22/99 trial. The aim of this exploratory analysis of the SAKK 22/99 trial was to characterize the specific subset of patients deriving long-term benefit from trastuzumab monotherapy alone and to identify potential predictive factors of long-term response.
This is an unplanned post-hoc analysis of patients randomized to Arm A (trastuzumab monotherapy). Patients were divided in two groups: patients with durable clinical benefit from trastuzumab monotherapy and short-term responders without durable clinical benefit from trastuzumab monotherapy Univariate and multivariate analyses of clinical characteristics correlating with response duration was performed.
Eighty six patients were randomized in arm A, 24 patients (28%) were long-term responders and 62 (72%) were short-term responders with a 5y-overall survival (OS) of 54% (95% CI 31-72) and of 18% (95%CI 10-30), respectively. Absence of ER expression, absence of PgR expression and presence of visceral disease emerged as possible negative predictive factors for durable clinical benefit.
Durable clinical benefit can be achieved with trastuzumab monotherapy in a subgroup of HER2-positive patients with advanced disease and it is predictive for longer OS. Further investigations of predictive biomarkers are necessary to better characterize this subgroup of patients and develop further de-escalating strategies.
NCT00004935 ; first posted 27.01.2003, retrospectively registered
First-line temozolomide combined with bevacizumab in metastatic melanoma: a multicentre phase II trial (SAKK 50/07)
Background: Oral temozolomide has shown similar efficacy to dacarbazine in phase III trials with median progression-free survival (PFS) of 2.1 months. Bevacizumab has an inhibitory effect on the proliferation of melanoma and sprouting endothelial cells. We evaluated the addition of bevacizumab to temozolomide to improve efficacy in stage IV melanoma. Patients and methods: Previously untreated metastatic melanoma patients with Eastern Cooperative Oncology Group performance status of two or more were treated with temozolomide 150 mg/m2 days 1-7 orally and bevacizumab 10 mg/kg body weight i.v. day 1 every 2 weeks until disease progression or unacceptable toxicity. The primary end point was disease stabilisation rate [complete response (CR), partial response (PR) or stable disease (SD)] at week 12 (DSR12); secondary end points were best overall response, PFS, overall survival (OS) and adverse events. Results: Sixty-two patients (median age 59 years) enrolled at nine Swiss centres. DSR12 was 52% (PR: 10 patients and SD: 22 patients). Confirmed overall response rate was 16.1% (CR: 1 patient and PR: 9 patients). Median PFS and OS were 4.2 and 9.6 months. OS (12.0 versus 9.2 months; P = 0.014) was higher in BRAF V600E wild-type patients. Conclusions: The primary end point was surpassed showing promising activity of this bevacizumab/temozolomide combination with a favourable toxicity profile. Response and OS were significantly higher in BRAF wild-type patient
hMMP9 as predictive factor for response and progression free survival in breast cancer patients treated with bevacizumab and pegylated liposomal doxorubicin (PLD)
Background: The anti-angiogenic drug, bevacizumab (Bv), is currently used in the treatment of different malignancies including breast cancer. Many angiogenesis-associated molecules are found in the circulation of cancer patients. Until now, there are no prognostic or predictive factors identified in breast cancer patients treated with Bv. We present here the first results of the prospective monitoring of 6 angiogenesis-related molecules in the peripheral blood of breast cancer patients treated with a combination of Bv and PLD in the phase II trial, SAKK 24/06.
Methods: Patients were treated with PLD (20 mg/m2) and Bv (10 mg/kg) on days 1 and 15 of each 4-week cycle for a maximum of 6 cycles, followed by Bv monotherapy maintenance (10 mg/m2 q2 weeks) until progression or severe toxicity. Plasma and serum samples were collected at baseline, after 2 months of therapy, then every 3 months and at treatment discontinuation. Enzyme-linked immunosorbent assays (Quantikine, R&D Systems and Reliatech) were used to measure the expression levels of human vascular endothelial growth factor (hVEGF), placental growth factor (hPlGF), matrix metalloproteinase 9 (hMMP9) and soluble VEGF receptors hsVEGFR-1, hsVEGFR-2 and hsVEGFR-3. The log-transformed data (to reduce the skewness) for each marker was analyzed using an analysis of variance (ANOVA) model to determine if there was a difference between the mean of the subgroups of interest (where α = 0.05). The untransformed data was also analyzed in the same manner as a "sensitivity" check.
Results: 132 blood samples were collected in 41 out of 43 enrolled patients. Baseline levels of the molecules were compared to disease status according to RECIST. There was a statistically significant difference in the mean of the log-transformed levels of hMMP9 between responders [CR+PR] versus the mean in
patients with PD (p-value=0.0004, log fold change=0.7536), and between patients with disease control [CR+PR+SD] and those with PD (p-value=<0.0001, log fold change=0.81559), with the log-transformed level of hMMP9 being higher for the responder group. The mean of the log-transformed levels of hsVEGFR-1 was statistically significantly different between patients with disease control [CR+PR+SD] and those with PD (p-value=0.0068, log fold change=-0.6089), where the log-transformed level of hsVEGFR-1 was lower for the responder group. The log-transformed level of hMMP9 at baseline was identified as a significant prognostic factor in terms of progression free survival (PFS): p-value=0.0417, hazard ratio (HR)=0.574 with a corresponding 95% confidence interval (0.336 - 0.979)). No strong correlation was shown either between the log-transformed levels of hsVEGF, hPlGF, hsVEGFR-2 or hsVEGFR-3 and clinical response or the occurrence of severe toxicity, or between the levels of the different molecules.
Conclusions: Our results suggest that baseline plasma level of the matrix metalloproteinase, hMMP9, could predict tumor response and PFS in patients treated with a combination of Bv and PLD. These data justify further investigation in breast cancer patients treated with anti-angiogenic therapy
Liposomes in Biology and Medicine
Drug delivery systems (DDS) have become important tools for the specific delivery of a large number of drug molecules. Since their discovery in the 1960s liposomes were recognized as models to study biological membranes and as versatile DDS of both hydrophilic and lipophilic molecules. Liposomes--nanosized unilamellar phospholipid bilayer vesicles--undoubtedly represent the most extensively studied and advanced drug delivery vehicles. After a long period of research and development efforts, liposome-formulated drugs have now entered the clinics to treat cancer and systemic or local fungal infections, mainly because they are biologically inert and biocompatible and practically do not cause unwanted toxic or antigenic reactions. A novel, up-coming and promising therapy approach for the treatment of solid tumors is the depletion of macrophages, particularly tumor associated macrophages with bisphosphonate-containing liposomes. In the advent of the use of genetic material as therapeutic molecules the development of delivery systems to target such novel drug molecules to cells or to target organs becomes increasingly important. Liposomes, in particular lipid-DNA complexes termed lipoplexes, compete successfully with viral gene transfection systems in this field of application. Future DDS will mostly be based on protein, peptide and DNA therapeutics and their next generation analogs and derivatives. Due to their versatility and vast body of known properties liposome-based formulations will continue to occupy a leading role among the large selection of emerging DDS
A multicenter phase II trial of anti-EGFR-immunoliposomes loaded with doxorubicin in patients with advanced triple negative breast cancer
Advanced triple negative breast cancer (TNBC) is an aggressive, but initially chemo-sensitive disease. The prognosis is poor and more than three quarters of patients experience progression 12 months after the initiation of conventional first-line chemotherapy. Approximately two thirds of TNBC express epidermal growth factor receptor 1 (EGFR). We have developed an anti-EGFR targeted nanocontainer drug by inserting anti-EGFR antibody fragments into the membrane of pegylated liposomes (anti-EGFR-ILs-dox). The payload consists of doxorubicin, a standard drug for TNBC. In a first-in-human phase I trial in 26 patients with various advanced solid malignancies, anti-EGFR-ILs-dox has shown little toxicity and encouraging efficacy. In this single-arm phase II trial, we assessed the efficacy of anti-EGFR-ILs-dox as first-line therapy in patients with advanced, EGFR + TNBC. The primary endpoint was progression-free survival at 12 months (PFS12m). Secondary endpoints included overall response rate (ORR), duration of response (DOR), time to progression (TTP), overall survival (OS) and adverse events (AEs). 48 patients received anti-EGFR-ILs-dox 50 mg/m iv, on day one of a 28 days-cycle until progression. The Kaplan-Meier estimate for PFS12m was 13% (one-sided 90% CI 7%, 95% CI [5%, 25%]), median PFS was 3.5 months (95% CI 1.9, 5.4). The trial has not reached its primary endpoint. There were no new toxicity signals. Based on these results, anti-EGFR-ILs-dox should not be further developed for TNBC. It remains an open question whether anti-EGFR-ILs-dox would offer more opportunities in other EGFR-expressing malignancies, where targeting this receptor has already shown anticancer effects.Trial registration: This trial was registered at clinicaltrials.gov: NCT02833766. Registered 14/07/2016
Convection and Retro-Convection Enhanced Delivery: Some Theoretical Considerations Related to Drug Targeting
Delivery of drugs and macromolecules into the brain is a challenging problem, due in part to the blood–brain barrier. In this article, we focus on the possibilities and limitations of two infusion techniques devised to bypass the blood–brain barrier: convection enhanced delivery (CED) and retro-convection enhanced delivery (R-CED). CED infuses fluid directly into the interstitial space of brain or tumor, whereas R-CED removes fluid from the interstitial space, which results in the transfer of drugs from the vascular compartment into the brain or tumor. Both techniques have shown promising results for the delivery of drugs into large volumes of tissue. Theoretical approaches of varying complexity have been developed to better understand and predict brain interstitial pressures and drug distribution for these techniques. These theoretical models of flow and diffusion can only be solved explicitly in simple geometries, and spherical symmetry is usually assumed for CED, while axial symmetry has been assumed for R-CED. This perspective summarizes features of these models and provides physical arguments and numerical simulations to support the notion that spherical symmetry is a reasonable approximation for modeling CED and R-CED. We also explore the potential of multi-catheter arrays for delivering and compartmentalizing drugs using CED and R-CED
Infrequent mutation of the tumour-suppressor gene Smad4 in early-stage colorectal cancer
Smad4 is a candidate tumour-suppressor gene identified recently on chromosome 18q21.1. Both alleles are inactivated in nearly one-half of pancreatic carcinomas, but its role in the tumorigenesis of other tumours is still unknown. The aim of this study was to investigate the potential involvement of the Smad4 locus in early-stage colorectal cancers (stages I–III) in tumour samples from a randomised multicentre trial. Of a large collection of DNA samples, 73 with a loss of one allele of the Smad4 gene were analysed for the presence of point mutations in the remaining gene. Patients, from whom biopsies were isolated, were part of a previous randomised multicentre study of the Swiss Group for Clinical Cancer Research on the benefit of adjuvant chemotherapy (SAKK study 40/81). Mutation analysis was restricted to the highly conserved C-terminal domain (exons 8, 9, 10 and 11) of Smad4, using PCR and single-strand conformational variant analysis. Two of the 73 patients (3%) with loss of one allele of Smad4 had a point mutation in the remaining allele. These results indicate that whereas Smad4 point mautations are prevalent in pancreatic carcinoma, they are infrequent in early stages (I–III) of colorectal cancer
Differential Efficacy From the Addition of Bortezomib to R-CHOP in Diffuse Large B-Cell Lymphoma According to the Molecular Subgroup in the REMoDL-B Study With a 5-Year Follow-Up
The REMoDL-B phase III adaptive trial compared rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP) versus R-CHOP + bortezomib (RB-CHOP) in patients with diffuse large B-cell lymphoma (DLBCL), stratified by molecular subtype. Primary analysis at a median follow-up of 30 months found no effect of bortezomib on progression-free survival (PFS) or overall survival (OS). Retrospective analysis using a gene expression–based classifier identified a molecular high-grade (MHG) group with worse outcomes. We present an updated analysis for patients successfully classified by the gene expression profile (GEP). Eligible patients were age older than 18 years with untreated DLBCL, fit enough for full-dose chemotherapy, and with adequate biopsies for GEP. Of 1,077 patients registered, 801 were identified with Activated B-Cell (ABC), Germinal Center B-cell, or MHG lymphoma. At a median follow-up of 64 months, there was no overall benefit of bortezomib on PFS or OS (5-year PFS hazard ratio [HR], 0.81; P = .085; OS HR, 0.86; P = .32). However, improved PFS and OS were seen in ABC lymphomas after RB-CHOP: 5-year OS 67% with R-CHOP versus 80% with RB-CHOP (HR, 0.58; 95% CI, 0.35 to 0.95; P = .032). Five-year PFS was higher in MHG lymphomas: 29% versus 55% (HR, 0.46; 95% CI, 0.26 to 0.84). Patients with ABC and MHG DLBCL may benefit from the addition of bortezomib to R-CHOP in initial therapy
Non-PEGylated liposomes for convection-enhanced delivery of topotecan and gadodiamide in malignant glioma: initial experience
Convection-enhanced delivery (CED) of highly stable PEGylated liposomes encapsulating chemotherapeutic drugs has previously been effective against malignant glioma xenografts. We have developed a novel, convectable non-PEGylated liposomal formulation that can be used to encapsulate both the topoisomerase I inhibitor topotecan (topoCED™) and paramagnetic gadodiamide (gadoCED™), providing an ideal basis for real-time monitoring of drug distribution. Tissue retention of topoCED following single CED administration was significantly improved relative to free topotecan. At a dose of 10 μg (0.5 mg/ml), topoCED had a half-life in brain of approximately 1 day and increased the area under the concentration–time curve (AUC) by 28-fold over free topotecan (153.8 vs. 5.5 μg day/g). The combination of topoCED and gadoCED was found to co-convect well in both naïve rat brain and malignant glioma xenografts (correlation coefficients 0.97–0.99). In a U87MG cell assay, the 50% inhibitory concentration (IC50) of topoCED was approximately 0.8 μM at 48 and 72 h; its concentration–time curves were similar to free topotecan and unaffected by gadoCED. In a U87MG intracranial rat xenograft model, a two-dose CED regimen of topoCED co-infused with gadoCED greatly increased median overall survival at dose levels of 0.5 mg/ml (29.5 days) and 1.0 mg/ml (33.0 days) vs. control (20.0 days; P < 0.0001 for both comparisons). TopoCED at higher concentrations (1.6 mg/ml) co-infused with gadoCED showed no evidence of histopathological changes attributable to either agent. The positive results of tissue pharmacokinetics, co-convection, cytotoxicity, efficacy, and lack of toxicity of topoCED in a clinically meaningful dose range, combined with an ideal matched-liposome paramagnetic agent, gadoCED, implicates further clinical applications of this therapy in the treatment of malignant glioma
- …