1 research outputs found

    Effect of metallacarborane salt H[COSANE] doping on the performance properties of polybenzimidazole membranes for high temperature PEMFCs

    Full text link
    [EN] In this paper, a series of composite proton exchange membranes comprising a cobaltacarborane protonated H[Co(C2B9H11)(2)] named (H[COSANE]) and polybenzimidazole (PBI) for a high temperature proton exchange membrane fuel cell (PEMFC) is reported, with the aim of enhancing the proton conductivity of PBI membranes doped with phosphoric acid. The effects of the anion [Co(C2B9H11)(2)] concentration in three different polymeric matrices based on the PBI structure, poly(2,2 '-(m-phenylene)-5,5 '-bibenzimidazole) (PBI-1), poly[2,2 '-(p-oxydiphenylene)-5,5 '-bibenzimidazole] (PBI-2) and poly(2,2 '-(p-hexafluoroisopropylidene)-5,5 '-bibenzimidazole) (PBI-3), have been investigated. The conductivity, diffusivity and mobility are greater in the composite membrane poly(2,2 '-(p-hexafluoroisopropylidene)-5,5 '-bibenzimidazole) containing fluorinated groups, reaching a maximum when the amount of H[COSANE] was 15%. In general, all the prepared membranes displayed excellent and tunable properties as conducting materials, with conductivities higher than 0.03 S cm(-1)above 140 degrees C. From an analysis of electrode polarization (EP) the proton diffusion coefficients and mobility have been calculated.This work was financially supported by the Ministerio de Economia y Competitividad (MINECO) under project ENE/2015-69203-R and by Consejo Nacional de Ciencia y Tecnologia (CONACyT) for the postdoctoral grant to J. O. The technical support of Servei de Microscpia Electrnica at Universitat Politecnica de Valencia and Servei Central d'Instrumentacio Cientifica at Universitat Jaume I is gratefully acknowledged. The authors thanks Prof. Santiago V. Luis (from Universitat Jaume I) and Dr Isabel Fuentes, Prof. Francesc Teixidor and Prof. Clara Vinas (from Instituto de Materiales de Barcelona, CSIC), for supplying the H[COSANE] compound.Olvera-Mancilla, J.; Escorihuela, J.; Alexandrova, L.; Andrio, A.; Garcia-Bernabe, A.; Del Castillo, LF.; Compañ Moreno, V. (2020). Effect of metallacarborane salt H[COSANE] doping on the performance properties of polybenzimidazole membranes for high temperature PEMFCs. Soft Matter. 16(32):7624-7635. https://doi.org/10.1039/d0sm00743aS762476351632https://earthsky.org/earth/atmospheric-co2-record-high-may-2019Steele, B. C. H., & Heinzel, A. (2001). Materials for fuel-cell technologies. Nature, 414(6861), 345-352. doi:10.1038/35104620CLEGHORN, S. (1997). Pem fuel cells for transportation and stationary power generation applications. International Journal of Hydrogen Energy, 22(12), 1137-1144. doi:10.1016/s0360-3199(97)00016-5Wang, Y., Chen, K. S., Mishler, J., Cho, S. C., & Adroher, X. C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88(4), 981-1007. doi:10.1016/j.apenergy.2010.09.030Savage, J., Tse, Y.-L. S., & Voth, G. A. (2014). Proton Transport Mechanism of Perfluorosulfonic Acid Membranes. The Journal of Physical Chemistry C, 118(31), 17436-17445. doi:10.1021/jp504714dMauritz, K. A., & Moore, R. B. (2004). State of Understanding of Nafion. Chemical Reviews, 104(10), 4535-4586. doi:10.1021/cr0207123Kraytsberg, A., & Ein-Eli, Y. (2014). Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28(12), 7303-7330. doi:10.1021/ef501977kHickner, M. A., Ghassemi, H., Kim, Y. S., Einsla, B. R., & McGrath, J. E. (2004). Alternative Polymer Systems for Proton Exchange Membranes (PEMs). Chemical Reviews, 104(10), 4587-4612. doi:10.1021/cr020711aKongstein, O. E., Berning, T., BĂžrresen, B., Seland, F., & Tunold, R. (2007). Polymer electrolyte fuel cells based on phosphoric acid doped polybenzimidazole (PBI) membranes. Energy, 32(4), 418-422. doi:10.1016/j.energy.2006.07.009Pant, B., Park, M., & Park, S.-J. (2019). One-Step Synthesis of Silver Nanoparticles Embedded Polyurethane Nano-Fiber/Net Structured Membrane as an Effective Antibacterial Medium. Polymers, 11(7), 1185. doi:10.3390/polym11071185Suryani, Chang, Y.-N., Lai, J.-Y., & Liu, Y.-L. (2012). Polybenzimidazole (PBI)-functionalized silica nanoparticles modified PBI nanocomposite membranes for proton exchange membranes fuel cells. Journal of Membrane Science, 403-404, 1-7. doi:10.1016/j.memsci.2012.01.043Escorihuela, J., Sahuquillo, Ó., GarcĂ­a-BernabĂ©, A., GimĂ©nez, E., & Compañ, V. (2018). Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Significantly Enhanced Proton Conductivity under Low Humidity Conditions. Nanomaterials, 8(10), 775. doi:10.3390/nano8100775Escorihuela, J., GarcĂ­a-BernabĂ©, A., Montero, Á., Sahuquillo, Ó., GimĂ©nez, E., & Compañ, V. (2019). Ionic Liquid Composite Polybenzimidazol Membranes for High Temperature PEMFC Applications. Polymers, 11(4), 732. doi:10.3390/polym11040732Compañ, V., Escorihuela, J., Olvera, J., GarcĂ­a-BernabĂ©, A., & Andrio, A. (2020). Influence of the anion on diffusivity and mobility of ionic liquids composite polybenzimidazol membranes. Electrochimica Acta, 354, 136666. doi:10.1016/j.electacta.2020.136666Fuentes, I., Andrio, A., GarcĂ­a-BernabĂ©, A., Escorihuela, J., Viñas, C., Teixidor, F., & Compañ, V. (2018). Structural and dielectric properties of cobaltacarborane composite polybenzimidazole membranes as solid polymer electrolytes at high temperature. Physical Chemistry Chemical Physics, 20(15), 10173-10184. doi:10.1039/c8cp00372fDechnik, J., Gascon, J., Doonan, C. J., Janiak, C., & Sumby, C. J. (2017). Mixed‐Matrix Membranes. Angewandte Chemie International Edition, 56(32), 9292-9310. doi:10.1002/anie.201701109Chung, T.-S., Jiang, L. Y., Li, Y., & Kulprathipanja, S. (2007). Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in Polymer Science, 32(4), 483-507. doi:10.1016/j.progpolymsci.2007.01.008Zhang, J., Xie, Z., Zhang, J., Tang, Y., Song, C., Navessin, T., 
 Holdcroft, S. (2006). High temperature PEM fuel cells. Journal of Power Sources, 160(2), 872-891. doi:10.1016/j.jpowsour.2006.05.034Araya, S. S., Zhou, F., Liso, V., Sahlin, S. L., Vang, J. R., Thomas, S., 
 KĂŠr, S. K. (2016). A comprehensive review of PBI-based high temperature PEM fuel cells. International Journal of Hydrogen Energy, 41(46), 21310-21344. doi:10.1016/j.ijhydene.2016.09.024Asensio, J. A., SĂĄnchez, E. M., & GĂłmez-Romero, P. (2010). Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chemical Society Reviews, 39(8), 3210. doi:10.1039/b922650hWang, Y., Shi, Z., Fang, J., Xu, H., & Yin, J. (2011). Graphene oxide/polybenzimidazole composites fabricated by a solvent-exchange method. Carbon, 49(4), 1199-1207. doi:10.1016/j.carbon.2010.11.036Li, J., Li, X., Zhao, Y., Lu, W., Shao, Z., & Yi, B. (2012). High-Temperature Proton-Exchange-Membrane Fuel Cells Using an Ether-Containing Polybenzimidazole Membrane as Electrolyte. ChemSusChem, 5(5), 896-900. doi:10.1002/cssc.201100725Qian, G., & Benicewicz, B. C. (2009). Synthesis and characterization of high molecular weight hexafluoroisopropylidene-containing polybenzimidazole for high-temperature polymer electrolyte membrane fuel cells. Journal of Polymer Science Part A: Polymer Chemistry, 47(16), 4064-4073. doi:10.1002/pola.23467NĂșñez, R., TarrĂ©s, M., Ferrer-Ugalde, A., de Biani, F. F., & Teixidor, F. (2016). Electrochemistry and Photoluminescence of Icosahedral Carboranes, Boranes, Metallacarboranes, and Their Derivatives. Chemical Reviews, 116(23), 14307-14378. doi:10.1021/acs.chemrev.6b00198Pepiol, A., Teixidor, F., SillanpÀÀ, R., Lupu, M., & Viñas, C. (2011). Stepwise Sequential Redox Potential Modulation Possible on a Single Platform. Angewandte Chemie International Edition, 50(52), 12491-12495. doi:10.1002/anie.201105668GonzĂĄlez-Cardoso, P., Stoica, A.-I., FarrĂ s, P., Pepiol, A., Viñas, C., & Teixidor, F. (2010). Additive Tuning of Redox Potential in Metallacarboranes by Sequential Halogen Substitution. Chemistry - A European Journal, 16(22), 6660-6665. doi:10.1002/chem.200902558TarrĂ©s, M., Viñas, C., Cioran, A. M., HĂ€nninen, M. M., SillanpÀÀ, R., & Teixidor, F. (2014). Towards Multifunctional Materials Incorporating Elastomers and Reversible Redox-Active Fragments. Chemistry - A European Journal, 20(48), 15808-15815. doi:10.1002/chem.201403424TarrĂ©s, M., Arderiu, V. S., Zaulet, A., Viñas, C., Fabrizi de Biani, F., & Teixidor, F. (2015). How to get the desired reduction voltage in a single framework! Metallacarborane as an optimal probe for sequential voltage tuning. Dalton Transactions, 44(26), 11690-11695. doi:10.1039/c5dt01464fFuentes, I., Andrio, A., Teixidor, F., Viñas, C., & Compañ, V. (2017). Enhanced conductivity of sodium versus lithium salts measured by impedance spectroscopy. Sodium cobaltacarboranes as electrolytes of choice. Physical Chemistry Chemical Physics, 19(23), 15177-15186. doi:10.1039/c7cp02526bEaton, P. E., Carlson, G. R., & Lee, J. T. (1973). Phosphorus pentoxide-methanesulfonic acid. Convenient alternative to polyphosphoric acid. The Journal of Organic Chemistry, 38(23), 4071-4073. doi:10.1021/jo00987a028Musto, P., Karasz, F. E., & MacKnight, W. J. (1989). Hydrogen bonding in polybenzimidazole/polyimide systems: a Fourier-transform infra-red investigation using low-molecular-weight monofunctional probes. Polymer, 30(6), 1012-1021. doi:10.1016/0032-3861(89)90072-4Xu, H., Chen, K., Guo, X., Fang, J., & Yin, J. (2007). Synthesis of novel sulfonated polybenzimidazole and preparation of cross-linked membranes for fuel cell application. Polymer, 48(19), 5556-5564. doi:10.1016/j.polymer.2007.07.029Kumar B., S., Sana, B., Unnikrishnan, G., Jana, T., & Kumar K. S., S. (2020). Polybenzimidazole co-polymers: their synthesis, morphology and high temperature fuel cell membrane properties. Polymer Chemistry, 11(5), 1043-1054. doi:10.1039/c9py01403aChuang, S.-W., & Hsu, S. L.-C. (2006). Synthesis and properties of a new fluorine-containing polybenzimidazole for high-temperature fuel-cell applications. Journal of Polymer Science Part A: Polymer Chemistry, 44(15), 4508-4513. doi:10.1002/pola.21555Chuang, S.-W., Hsu, S. L.-C., & Hsu, C.-L. (2007). Synthesis and properties of fluorine-containing polybenzimidazole/montmorillonite nanocomposite membranes for direct methanol fuel cell applications. Journal of Power Sources, 168(1), 172-177. doi:10.1016/j.jpowsour.2007.03.021Kang, Y., Zou, J., Sun, Z., Wang, F., Zhu, H., Han, K., 
 Meng, Q. (2013). Polybenzimidazole containing ether units as electrolyte for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 38(15), 6494-6502. doi:10.1016/j.ijhydene.2013.03.051Mack, F., Aniol, K., Ellwein, C., Kerres, J., & Zeis, R. (2015). Novel phosphoric acid-doped PBI-blends as membranes for high-temperature PEM fuel cells. Journal of Materials Chemistry A, 3(20), 10864-10874. doi:10.1039/c5ta01337bErgun, D., Devrim, Y., Bac, N., & Eroglu, I. (2012). Phosphoric acid doped polybenzimidazole membrane for high temperature PEM fuel cell. Journal of Applied Polymer Science, 124(S1), E267-E277. doi:10.1002/app.36507Yuan, S., Yan, G., Xia, Z., Guo, X., Fang, J., & Yang, X. (2013). Preparation and properties of covalently cross-linked sulfonated poly(sulfide sulfone)/polybenzimidazole blend membranes for fuel cell applications. High Performance Polymers, 26(2), 212-222. doi:10.1177/0954008313507589Sacco, A. (2017). Electrochemical impedance spectroscopy: Fundamentals and application in dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 79, 814-829. doi:10.1016/j.rser.2017.05.159Gomadam, P. M., & Weidner, J. W. (2005). Analysis of electrochemical impedance spectroscopy in proton exchange membrane fuel cells. International Journal of Energy Research, 29(12), 1133-1151. doi:10.1002/er.1144Klein, R. J., Zhang, S., Dou, S., Jones, B. H., Colby, R. H., & Runt, J. (2006). Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. The Journal of Chemical Physics, 124(14), 144903. doi:10.1063/1.2186638Serghei, A., Tress, M., Sangoro, J. R., & Kremer, F. (2009). Electrode polarization and charge transport at solid interfaces. Physical Review B, 80(18). doi:10.1103/physrevb.80.184301Leys, J., WĂŒbbenhorst, M., Preethy Menon, C., Rajesh, R., Thoen, J., Glorieux, C., 
 Longuemart, S. (2008). Temperature dependence of the electrical conductivity of imidazolium ionic liquids. The Journal of Chemical Physics, 128(6), 064509. doi:10.1063/1.2827462Coelho, R. (1983). Sur la relaxation d’une charge d’espace. Revue de Physique AppliquĂ©e, 18(3), 137-146. doi:10.1051/rphysap:01983001803013700Coelho, R. (1991). On the static permittivity of dipolar and conductive media — an educational approach. Journal of Non-Crystalline Solids, 131-133, 1136-1139. doi:10.1016/0022-3093(91)90740-wEscorihuela, J., GarcĂ­a-BernabĂ©, A., & Compañ, V. (2020). A Deep Insight into Different Acidic Additives as Doping Agents for Enhancing Proton Conductivity on Polybenzimidazole Membranes. Polymers, 12(6), 1374. doi:10.3390/polym12061374Villa, D. C., Angioni, S., Barco, S. D., Mustarelli, P., & Quartarone, E. (2014). Polysulfonated Fluoro-oxyPBI Membranes for PEMFCs: An Efficient Strategy to Achieve Good Fuel Cell Performances with Low H3PO4Doping Levels. Advanced Energy Materials, 4(11), 1301949. doi:10.1002/aenm.201301949Ma, Y.-L., Wainright, J. S., Litt, M. H., & Savinell, R. F. (2004). Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells. Journal of The Electrochemical Society, 151(1), A8. doi:10.1149/1.1630037Li, Q., Jensen, J. O., Savinell, R. F., & Bjerrum, N. J. (2009). High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Progress in Polymer Science, 34(5), 449-477. doi:10.1016/j.progpolymsci.2008.12.003Kumar, S. R., Wang, J.-J., Wu, Y.-S., Yang, C.-C., & Lue, S. J. (2020). Synergistic role of graphene oxide-magnetite nanofillers contribution on ionic conductivity and permeability for polybenzimidazole membrane electrolytes. Journal of Power Sources, 445, 227293. doi:10.1016/j.jpowsour.2019.227293Guerrero Moreno, N., Gervasio, D., GodĂ­nez GarcĂ­a, A., & PĂ©rez Robles, J. F. (2015). Polybenzimidazole-multiwall carbon nanotubes composite membranes for polymer electrolyte membrane fuel cells. Journal of Power Sources, 300, 229-237. doi:10.1016/j.jpowsour.2015.09.070Üregen, N., Pehlivanoğlu, K., Özdemir, Y., & Devrim, Y. (2017). Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells. International Journal of Hydrogen Energy, 42(4), 2636-2647. doi:10.1016/j.ijhydene.2016.07.009Yang, J., Gao, L., Wang, J., Xu, Y., Liu, C., & He, R. (2017). Strengthening Phosphoric Acid Doped Polybenzimidazole Membranes with Siloxane Networks for Using as High Temperature Proton Exchange Membranes. Macromolecular Chemistry and Physics, 218(10), 1700009. doi:10.1002/macp.201700009Satheesh Kumar, B., Sana, B., Mathew, D., Unnikrishnan, G., Jana, T., & Santhosh Kumar, K. S. (2018). Polybenzimidazole-nanocomposite membranes: Enhanced proton conductivity with low content of amine-functionalized nanoparticles. Polymer, 145, 434-446. doi:10.1016/j.polymer.2018.04.081Singha, S., & Jana, T. (2014). Structure and Properties of Polybenzimidazole/Silica Nanocomposite Electrolyte Membrane: Influence of Organic/Inorganic Interface. ACS Applied Materials & Interfaces, 6(23), 21286-21296. doi:10.1021/am506260jKannan, R., Kagalwala, H. N., Chaudhari, H. D., Kharul, U. K., Kurungot, S., & Pillai, V. K. (2011). Improved performance of phosphonated carbon nanotube–polybenzimidazole composite membranes in proton exchange membrane fuel cells. Journal of Materials Chemistry, 21(20), 7223. doi:10.1039/c0jm04265jXu, C., Cao, Y., Kumar, R., Wu, X., Wang, X., & Scott, K. (2011). A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. Journal of Materials Chemistry, 21(30), 11359. doi:10.1039/c1jm11159kMamlouk, M., Ocon, P., & Scott, K. (2014). Preparation and characterization of polybenzimidzaole/diethylamine hydrogen sulphate for medium temperature proton exchange membrane fuel cells. Journal of Power Sources, 245, 915-926. doi:10.1016/j.jpowsour.2013.07.050Fuentes, I., Mostazo‐LĂłpez, M. J., Kelemen, Z., Compañ, V., Andrio, A., MorallĂłn, E., 
 Teixidor, F. (2019). Are the Accompanying Cations of Doping Anions Influential in Conducting Organic Polymers? The Case of the Popular PEDOT. Chemistry – A European Journal, 25(63), 14308-14319. doi:10.1002/chem.201902708Springer, T. E., Zawodzinski, T. A., & Gottesfeld, S. (1991). Polymer Electrolyte Fuel Cell Model. Journal of The Electrochemical Society, 138(8), 2334-2342. doi:10.1149/1.2085971Otomo, J. (2003). Protonic conduction of CsH2PO4 and its composite with silica in dry and humid atmospheres. Solid State Ionics, 156(3-4), 357-369. doi:10.1016/s0167-2738(02)00746-4Gebbie, M. A., Smith, A. M., Dobbs, H. A., Lee, A. A., Warr, G. G., Banquy, X., 
 Atkin, R. (2017). Long range electrostatic forces in ionic liquids. Chemical Communications, 53(7), 1214-1224. doi:10.1039/c6cc08820aWeingĂ€rtner, H. (2008). Understanding Ionic Liquids at the Molecular Level: Facts, Problems, and Controversies. Angewandte Chemie International Edition, 47(4), 654-670. doi:10.1002/anie.200604951Rivera, A., & Rössler, E. A. (2006). Evidence of secondary relaxations in the dielectric spectra of ionic liquids. Physical Review B, 73(21). doi:10.1103/physrevb.73.212201Pu, H., Lou, L., Guan, Y., Chang, Z., & Wan, D. (2012). Proton exchange membranes based on semi-interpenetrating polymer networks of polybenzimidazole and perfluorosulfonic acid polymer with hollow silica spheres as micro-reservoir. Journal of Membrane Science, 415-416, 496-503. doi:10.1016/j.memsci.2012.05.036SĂžrensen, T. S., & Compañ, V. (1995). Complex permittivity of a conducting, dielectric layer containing arbitrary binary Nernst–Planck electrolytes with applications to polymer films and cellulose acetate membranes. J. Chem. Soc., Faraday Trans., 91(23), 4235-4250. doi:10.1039/ft9959104235SĂžrensen, T. S., Compañ, V., & Diaz-Calleja, R. (1996). Complex permittivity of a film of poly[4-(acryloxy)phenyl-(4-chlorophenyl)methanone] containing free ion impurities and the separation of the contributions from interfacial polarization, Maxwell–Wagner–Sillars effects and dielectric relaxations of the polymer chains. J. Chem. Soc., Faraday Trans., 92(11), 1947-1957. doi:10.1039/ft9969201947Wang, Y., Fan, F., Agapov, A. L., Saito, T., Yang, J., Yu, X., 
 Sokolov, A. P. (2014). Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes. Polymer, 55(16), 4067-4076. doi:10.1016/j.polymer.2014.06.085Valverde, D., Garcia-BernabĂ©, A., Andrio, A., GarcĂ­a-Verdugo, E., Luis, S. V., & Compañ, V. (2019). Free ion diffusivity and charge concentration on cross-linked polymeric ionic liquid iongel films based on sulfonated zwitterionic salts and lithium ions. Physical Chemistry Chemical Physics, 21(32), 17923-17932. doi:10.1039/c9cp01903kLee, S. H., & Rasaiah, J. C. (2011). Proton transfer and the mobilities of the H+ and OH− ions from studies of a dissociating model for water. The Journal of Chemical Physics, 135(12), 124505. doi:10.1063/1.3632990Liang, T., Shin, Y. K., Cheng, Y.-T., Yilmaz, D. E., Vishnu, K. G., Verners, O., 
 van Duin, A. C. T. (2013). Reactive Potentials for Advanced Atomistic Simulations. Annual Review of Materials Research, 43(1), 109-129. doi:10.1146/annurev-matsci-071312-121610Wang, Y., Sun, C.-N., Fan, F., Sangoro, J. R., Berman, M. B., Greenbaum, S. G., 
 Sokolov, A. P. (2013). Examination of methods to determine free-ion diffusivity and number density from analysis of electrode polarization. Physical Review E, 87(4). doi:10.1103/physreve.87.042308Bennour, I., Cioran, A. M., Teixidor, F., & Viñas, C. (2019). 3,2,1 and stop! An innovative, straightforward and clean route for the flash synthesis of metallacarboranes. Green Chemistry, 21(8), 1925-1928. doi:10.1039/c8gc03943
    corecore