30 research outputs found

    Structural analysis of the human SYCE2-TEX12 complex provides molecular insights into synaptonemal complex assembly

    Get PDF
    The successful completion of meiosis is essential for all sexually reproducing organisms. The synaptonemal complex (SC) is a large proteinaceous structure that holds together homologous chromosomes during meiosis, providing the structural framework for meiotic recombination and crossover formation. Errors in SC formation are associated with infertility, recurrent miscarriage and aneuploidy. The current lack of molecular information about the dynamic process of SC assembly severely restricts our understanding of its function in meiosis. Here, we provide the first biochemical and structural analysis of an SC protein component and propose a structural basis for its function in SC assembly. We show that human SC proteins SYCE2 and TEX12 form a highly stable, constitutive complex, and define the regions responsible for their homotypic and heterotypic interactions. Biophysical analysis reveals that the SYCE2–TEX12 complex is an equimolar hetero-octamer, formed from the association of an SYCE2 tetramer and two TEX12 dimers. Electron microscopy shows that biochemically reconstituted SYCE2–TEX12 complexes assemble spontaneously into filamentous structures that resemble the known physical features of the SC central element (CE). Our findings can be combined with existing biological data in a model of chromosome synapsis driven by growth of SYCE2–TEX12 higher-order structures within the CE of the SC

    Histone H2A-H2B binding by Pol α in the eukaryotic replisome contributes to the maintenance of repressive chromatin.

    Get PDF
    The eukaryotic replisome disassembles parental chromatin at DNA replication forks, but then plays a poorly understood role in the re-deposition of the displaced histone complexes onto nascent DNA. Here, we show that yeast DNA polymerase α contains a histone-binding motif that is conserved in human Pol α and is specific for histones H2A and H2B. Mutation of this motif in budding yeast cells does not affect DNA synthesis, but instead abrogates gene silencing at telomeres and mating-type loci. Similar phenotypes are produced not only by mutations that displace Pol α from the replisome, but also by mutation of the previously identified histone-binding motif in the CMG helicase subunit Mcm2, the human orthologue of which was shown to bind to histones H3 and H4. We show that chromatin-derived histone complexes can be bound simultaneously by Mcm2, Pol α and the histone chaperone FACT that is also a replisome component. These findings indicate that replisome assembly unites multiple histone-binding activities, which jointly process parental histones to help preserve silent chromatin during the process of chromosome duplication

    Shared Active Site Architecture between the Large Subunit of Eukaryotic Primase and DNA Photolyase

    Get PDF
    DNA synthesis during replication relies on RNA primers synthesised by the primase, a specialised DNA-dependent RNA polymerase that can initiate nucleic acid synthesis de novo. In archaeal and eukaryotic organisms, the primase is a heterodimeric enzyme resulting from the constitutive association of a small (PriS) and large (PriL) subunit. The ability of the primase to initiate synthesis of an RNA primer depends on a conserved Fe-S domain at the C-terminus of PriL (PriL-CTD). However, the critical role of the PriL-CTD in the catalytic mechanism of initiation is not understood.Here we report the crystal structure of the yeast PriL-CTD at 1.55 A resolution. The structure reveals that the PriL-CTD folds in two largely independent alpha-helical domains joined at their interface by a [4Fe-4S] cluster. The larger N-terminal domain represents the most conserved portion of the PriL-CTD, whereas the smaller C-terminal domain is largely absent in archaeal PriL. Unexpectedly, the N-terminal domain reveals a striking structural similarity with the active site region of the DNA photolyase/cryptochrome family of flavoproteins. The region of similarity includes PriL-CTD residues that are known to be essential for initiation of RNA primer synthesis by the primase.Our study reports the first crystallographic model of the conserved Fe-S domain of the archaeal/eukaryotic primase. The structural comparison with a cryptochrome protein bound to flavin adenine dinucleotide and single-stranded DNA provides important insight into the mechanism of RNA primer synthesis by the primase

    Structure of the hexameric HerA ATPase reveals a mechanism of translocation-coupled DNA-end processing in archaea.

    Get PDF
    The HerA ATPase cooperates with the NurA nuclease and the Mre11-Rad50 complex for the repair of double-strand DNA breaks in thermophilic archaea. Here we extend our structural knowledge of this minimal end-resection apparatus by presenting the first crystal structure of hexameric HerA. The full-length structure visualizes at atomic resolution the N-terminal HerA-ATP synthase domain and a conserved C-terminal extension, which acts as a physical brace between adjacent protomers. The brace also interacts in trans with nucleotide-binding residues of the neighbouring subunit. Our observations support a model in which the coaxial interaction of the HerA ring with the toroidal NurA dimer generates a continuous channel traversing the complex. HerA-driven translocation would propel the DNA towards the narrow annulus of NurA, leading to duplex melting and nucleolytic digestion. This system differs substantially from the bacterial end-resection paradigms. Our findings suggest a novel mode of DNA-end processing by this integrated archaeal helicase-nuclease machine.The SAXS data collection was supported by funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under BioStruct-X (grant agreement N°283570). Research in the N.P.R. laboratory is funded by the Medical Research Council [Career Development Award G0701443]. Research in the L.P. laboratory is funded by a Wellcome Trust Senior Fellowship Award in Basic Biomedical Sciences [grant number 08279/Z/07/Z]. Work in the L.P. and N.P.R. laboratories is also supported by an Isaac Newton Trust Research Grant, and S.M.B. is supported by a BBSRC Doctoral Training Grant.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/ncomms650

    Structural basis for inhibition of homologous recombination by the RecX protein

    Get PDF
    The RecA/RAD51 nucleoprotein filament is central to the reaction of homologous recombination (HR). Filament activity must be tightly regulated in vivo as unrestrained HR can cause genomic instability. Our mechanistic understanding of HR is restricted by lack of structural information about the regulatory proteins that control filament activity. Here, we describe a structural and functional analysis of the HR inhibitor protein RecX and its mode of interaction with the RecA filament. RecX is a modular protein assembled of repeated three-helix motifs. The relative arrangement of the repeats generates an elongated and curved shape that is well suited for binding within the helical groove of the RecA filament. Structure-based mutagenesis confirms that conserved basic residues on the concave side of RecX are important for repression of RecA activity. Analysis of RecA filament dynamics in the presence of RecX shows that RecX actively promotes filament disassembly. Collectively, our data support a model in which RecX binding to the helical groove of the filament causes local dissociation of RecA protomers, leading to filament destabilisation and HR inhibition

    Increasing capacity for the treatment of common musculoskeletal problems: A non-inferiority RCT and economic analysis of corticosteroid injection for shoulder pain comparing a physiotherapist and orthopaedic surgeon

    Get PDF
    Background Role substitution is a strategy employed to assist health services manage the growing demand for musculoskeletal care. Corticosteroid injection is a common treatment in this population but the efficacy of its prescription and delivery by physiotherapists has not been established against orthopaedic standards. This paper investigates whether corticosteroid injection given by a physiotherapist for shoulder pain is as clinically and cost effective as that from an orthopaedic surgeon. Methods A double blind non-inferiority randomized controlled trial was conducted in an Australian public hospital orthopaedic outpatient service, from January 2013 to June 2014. Adults with a General Practitioner referral to Orthopaedics for shoulder pain received subacromial corticosteroid and local anaesthetic injection prescribed and delivered independently by a physiotherapist or a consultant orthopaedic surgeon. The main outcome measure was total Shoulder Pain and Disability Index (SPADI) score at baseline, six and 12 weeks, applying a non-inferiority margin of 15 points. Secondary outcomes tested for superiority included pain, shoulder movement, perceived improvement, adverse events, satisfaction, quality of life and costs. Results 278 participants were independently assessed by the physiotherapist and the orthopaedic surgeon, with 64 randomised (physiotherapist 33, orthopaedic surgeon 31). There were no significant differences in baseline characteristics between groups. Non-inferiority of injection by the physiotherapist was declared from total SPADI scores at 6 and 12 weeks (upper limit of the 95% one-sided confidence interval 13.34 and 7.17 at 6 and 12 weeks, respectively). There were no statistically significant differences between groups on any outcome measures at 6 or 12 weeks. From the perspective of the health funder, the physiotherapist was less expensive. Conclusions Corticosteroid injection for shoulder pain, provided by a suitably qualified physiotherapist is at least as clinically effective, and less expensive, compared with similar care delivered by an orthopaedic surgeon. Policy makers and service providers should consider implementing this model of care

    Age-Related Differences in Socio-demographic and Behavioral Determinants of HIV Testing and Counseling in HPTN 043/NIMH Project Accept

    Get PDF
    Youth represent a large proportion of new HIV infections worldwide, yet their utilization of HIV testing and counseling (HTC) remains low. Using the post-intervention, cross-sectional, population-based household survey done in 2011 as part of HPTN 043/NIMH Project Accept, a cluster-randomized trial of community mobilization and mobile HTC in South Africa (Soweto and KwaZulu Natal), Zimbabwe, Tanzania and Thailand, we evaluated age-related differences among socio-demographic and behavioral determinants of HTC in study participants by study arm, site, and gender. A multivariate logistic regression model was developed using complete individual data from 13,755 participants with recent HIV testing (prior 12 months) as the outcome. Youth (18–24 years) was not predictive of recent HTC, except for high-risk youth with multiple concurrent partners, who were less likely (aOR 0.75; 95% CI 0.61–0.92) to have recently been tested than youth reporting a single partner. Importantly, the intervention was successful in reaching men with site specific success ranging from aOR 1.27 (95% CI 1.05–1.53) in South Africa to aOR 2.30 in Thailand (95% CI 1.85–2.84). Finally, across a diverse range of settings, higher education (aOR 1.67; 95% CI 1.42, 1.96), higher socio-economic status (aOR 1.21; 95% CI 1.08–1.36), and marriage (aOR 1.55; 95% CI 1.37–1.75) were all predictive of recent HTC, which did not significantly vary across study arm, site, gender or age category (18–24 vs. 25–32 years)
    corecore