165 research outputs found

    Faster Exploration of Some Temporal Graphs

    Get PDF
    A temporal graph G = (G_1, G_2, ..., G_T) is a graph represented by a sequence of T graphs over a common set of vertices, such that at the i-th time step only the edge set E_i is active. The temporal graph exploration problem asks for a shortest temporal walk on some temporal graph visiting every vertex. We show that temporal graphs with n vertices can be explored in O(k n^{1.5} log n) days if the underlying graph has treewidth k and in O(n^{1.75} log n) days if the underlying graph is planar. Furthermore, we show that any temporal graph whose underlying graph is a cycle with k chords can be explored in at most 6kn days. Finally, we demonstrate that there are temporal realisations of sub cubic planar graphs that cannot be explored faster than in ?(n log n) days. All these improve best known results in the literature

    Critical properties of bipartite permutation graphs

    Get PDF
    The class of bipartite permutation graphs enjoys many nice and important properties. In particular, this class is critically important in the study of clique‐ and rank‐width of graphs, because it is one of the minimal hereditary classes of graphs of unbounded clique‐ and rank‐width. It also contains a number of important subclasses, which are critical with respect to other parameters, such as graph lettericity or shrub‐depth, and with respect to other notions, such as well‐quasi‐ordering or complexity of algorithmic problems. In the present paper we identify critical subclasses of bipartite permutation graphs of various types

    More results on weighted independent domination

    Get PDF
    Weighted independent domination is an NP-hard graph problem, which remains computationally intractable in many restricted graph classes. In particular, the problem is NP-hard in the classes of sat-graphs and chordal graphs. We strengthen these results by showing that the problem is NP-hard in a proper subclass of the intersection of sat-graphs and chordal graphs. On the other hand, we identify two new classes of graphs where the problem admits polynomial-time solutions

    Independent domination versus weighted independent domination.

    Get PDF
    Independent domination is one of the rare problems for which the complexity of weighted and unweighted versions is known to be different in some classes of graphs. Trying to better understand the gap between the two versions of the problem, in the present paper we prove two complexity results. First, we extend NP-hardness of the weighted version in a certain class to the unweighted case. Second, we strengthen polynomial-time solvability of the unweighted version in the class of -free graphs to the weighted case. This result is tight in the sense that both versions are NP-hard in the class of -free graphs, i.e. is a minimal graph forbidding of which produces an NP-hard case for both versions of the problem

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Faster Exploration of Some Temporal Graphs

    No full text
    A temporal graph G = (G1, G2,..., GT ) is a graph represented by a sequence of T graphs over a common set of vertices, such that at the ith time step only the edge set Ei is active. The temporal graph exploration problem asks for a shortest temporal walk on some temporal graph visiting every vertex. We show that temporal graphs with n vertices can be explored in O(kn1.5 log n) days if the underlying graph has treewidth k and in O(n1.75 log n) days if the underlying graph is planar. Furthermore, we show that any temporal graph whose underlying graph is a cycle with k chords can be explored in at most 6kn days. Finally, we demonstrate that there are temporal realisations of sub cubic planar graphs that cannot be explored faster than in Ω(n log n) days. All these improve best known results in the literature.</p

    Faster Exploration of Some Temporal Graphs

    No full text
    A temporal graph G = (G1, G2,..., GT ) is a graph represented by a sequence of T graphs over a common set of vertices, such that at the ith time step only the edge set Ei is active. The temporal graph exploration problem asks for a shortest temporal walk on some temporal graph visiting every vertex. We show that temporal graphs with n vertices can be explored in O(kn1.5 log n) days if the underlying graph has treewidth k and in O(n1.75 log n) days if the underlying graph is planar. Furthermore, we show that any temporal graph whose underlying graph is a cycle with k chords can be explored in at most 6kn days. Finally, we demonstrate that there are temporal realisations of sub cubic planar graphs that cannot be explored faster than in Ω(n log n) days. All these improve best known results in the literature.</p
    corecore