3 research outputs found

    Closing the loops on Southern Ocean dynamics: From the circumpolar current to ice shelves and from bottom mixing to surface waves

    Get PDF
    A holistic review is given of the Southern Ocean dynamic system, in the context of the crucial role it plays in the global climate and the profound changes it is experiencing. The review focuses on connections between different components of the Southern Ocean dynamic system, drawing together contemporary perspectives from different research communities, with the objective of closing loops in our understanding of the complex network of feedbacks in the overall system. The review is targeted at researchers in Southern Ocean physical science with the ambition of broadening their knowledge beyond their specific field, and aims at facilitating better-informed interdisciplinary collaborations. For the purposes of this review, the Southern Ocean dynamic system is divided into four main components: large-scale circulation; cryosphere; turbulence; and gravity waves. Overviews are given of the key dynamical phenomena for each component, before describing the linkages between the components. The reviews are complemented by an overview of observed Southern Ocean trends and future climate projections. Priority research areas are identified to close remaining loops in our understanding of the Southern Ocean system

    A synthesis of thermodynamic ablation at ice–ocean interfaces from theory, observations and models.

    No full text
    Thermodynamic ablation of ice in contact with the ocean is an essential element of ice sheet and ocean interactions but is challenging to model and quantify. Building on earlier observations of sea ice ablation, a variety of recent theoretical, experimental and observational studies have considered ice ablation in contrasting geometries, from vertical to near-horizontal ice faces, and reveal different scaling behaviour for predicted ablation rates in different dynamical regimes. However, uncertainties remain about when the contrasting results should be applied, as existing model parameterisations do not capture all relevant regimes of ice–ocean ablation. To progress towards improved models of ice–ocean​ interaction, we synthesise current understanding into a classification of ablation types. We examine the effect of the classification on the parameterisation of turbulent fluxes from the ocean towards the ice, and identify the dominant processes next to ice interfaces of different orientation. Four ablation types are defined: melting and dissolving based on ocean temperatures, and shear-controlled and buoyancy-controlled regimes based on the dynamics of the near-ice molecular sublayer. We describe existing observational and modelling studies of sea ice, ice shelves, and glacier termini, as well as laboratory studies, to show how they fit into this classification. Two sets of observations from the Ross and Ronne Ice Shelf cavities suggest that both the buoyancy-controlled and shear-controlled regimes may be relevant under different oceanographic conditions. Overall, buoyancy-controlled dynamics are more likely when the molecular sublayer has lower Reynolds number, and shear for higher Reynolds number, although the observations suggest some variability about this trend

    A synthesis of thermodynamic ablation at ice–ocean interfaces from theory, observations and models

    No full text
    corecore