278 research outputs found

    Proximal repair in acute type A aortic dissection: The dark side of the root

    Get PDF
    Abstract There is no agreement regarding the best treatment for proximal repair in acute type A aortic dissection. Isolated replacement of the ascending aorta has been shown effective but can leave patients at a higher risk of further aortic procedures. The interpretation of the results coming from the literature is difficult because of the great variability of the clinical scenarios and the anatomic extension of the dissection. The analysis of the risk factors suggests that the presence of the underlying root pathology and a more extensive involvement of the aortic root should address the surgeon towards a more radical proximal resection

    Ranking the in vivo toxicity of nanomaterials in Drosophila melanogaster

    Get PDF
    In this work, we propose a quantitative assessment of nanoparticles toxicity in vivo. We show a quantitative ranking of several types of nanoparticles (AuNPs, AgNPs, cadmium-based QDs, cadmium-free QDs, and iron oxide NPs, with different coating and/or surface chemistries), providing a categorization of their toxicity outcomes. This strategy may offer an innovative high-throughput screening tool of nanomaterials, of potential and broad interest to the nanoscience community

    Fluorescent Nanocrystals Reveal Regulated Portals of Entry into and Between the Cells of Hydra

    Get PDF
    Initially viewed as innovative carriers for biomedical applications, with unique photophysical properties and great versatility to be decorated at their surface with suitable molecules, nanoparticles can also play active roles in mediating biological effects, suggesting the need to deeply investigate the mechanisms underlying cell-nanoparticle interaction and to identify the molecular players. Here we show that the cell uptake of fluorescent CdSe/CdS quantum rods (QRs) by Hydra vulgaris, a simple model organism at the base of metazoan evolution, can be tuned by modifying nanoparticle surface charge. At acidic pH, amino-PEG coated QRs, showing positive surface charge, are actively internalized by tentacle and body ectodermal cells, while negatively charged nanoparticles are not uptaken. In order to identify the molecular factors underlying QR uptake at acidic pH, we provide functional evidence of annexins involvement and explain the QR uptake as the combined result of QR positive charge and annexin membrane insertion. Moreover, tracking QR labelled cells during development and regeneration allowed us to uncover novel intercellular trafficking and cell dynamics underlying the remarkable plasticity of this ancient organism

    Direct-written polymer field-effect transistors operating at 20 MHz

    Get PDF
    Printed polymer electronics has held for long the promise of revolutionizing technology by delivering distributed, flexible, lightweight and cost-effective applications for wearables, healthcare, diagnostic, automation and portable devices. While impressive progresses have been registered in terms of organic semiconductors mobility, field-effect transistors (FETs), the basic building block of any circuit, are still showing limited speed of operation, thus limiting their real applicability. So far, attempts with organic FETs to achieve the tens of MHz regime, a threshold for many applications comprising the driving of high resolution displays, have relied on the adoption of sophisticated lithographic techniques and/or complex architectures, undermining the whole concept. In this work we demonstrate polymer FETs which can operate up to 20 MHz and are fabricated by means only of scalable printing techniques and direct-writing methods with a completely mask-less procedure. This is achieved by combining a fs-laser process for the sintering of high resolution metal electrodes, thus easily achieving micron-scale channels with reduced parasitism down to 0.19 pF mm(-1), and a large area coating technique of a high mobility polymer semiconductor, according to a simple and scalable process flow

    In vivo assessment of CdSe-ZnS quantum dots: coating dependent bioaccumulation and genotoxicity.

    Get PDF
    Semiconductor nanocrystals, or Quantum Dots (QDs), have gained considerable attention due to their unique size-dependent optical and electronic properties that make them attractive for a wide range of applications, including biology and nanomedicine. Their widespread use, however, poses urgent questions about their potential toxicity, especially because of their heavy metal composition that could cause harmful effects to human health and environment. In this work, we evaluated in vivo the long-term toxicity of CdSe-ZnS QDs with different surface coatings, probing oral administration in the model system Drosophila melanogaster. In particular, we found that all the differently coated QDs significantly affect the lifespan of treated Drosophila populations and induce a marked increase in reactive oxygen species (ROS) levels. Furthermore, we observed that these QDs induce severe genotoxic effects and increased rate of apoptosis in Drosophila haemocytes. These toxic effects were found to be mainly related to the in vivo degradation of QDs with consequent release of Cd(2+) ions, while the coating of QDs can modulate their bioaccumulation in the organism, partly decreasing their overall toxicity

    Normothermic frozen elephant trunk: our experience and literature review

    Get PDF
    none6Background and Objective: The frozen elephant trunk (FET) technique has undoubtable advantages in treating complex and extensive disease of the aortic arch and the thoracic descending aorta. Despite several improvements in cardiopulmonary bypass conduction and surgical strategy, operative times and the institution of systemic circulatory arrest remain the main determinants of early mortality, cerebral/spinal cord injury and visceral organs dysfunction. We have conducted this review to highlight the recent technical advances in arch and FET surgery aiming at the reduction/avoidance of systemic circulatory arrest, and their impact on early outcomes. Methods: A literature search (from origin to January 2022), limited to publications in English, was performed on online platforms and database (PubMed, Google, ResearchGate). After a further review of associated or similar papers, we found 4 experiences, described by 11 peer-reviewed published papers, which focused on minimising or avoiding systemic circulatory arrest during total arch replacement plus stenting of the descending thoracic aorta. Key Content and Findings: Recent experiences reported the use of an antegrade endoaortic balloon, advanced and inflated into the stent graft, to provide an early systemic reperfusion soon after the deployment of the stented portion of the FET prosthesis and minimize the circulatory arrest time (down to a mean of 5 minutes), thus avoiding the need of moderate or deep hypothermia (mean systemic temperature 28-30 ???) while allowing a complete arch and FET repair. Our approach, based on off-pump retrograde vascular stent graft deployment in distal arch/descending thoracic aorta, and the use of a retrograde endoballoon, allows the repair of extensive aortic pathologies during uninterrupted normothermic cerebral and lower body perfusion. Conclusions: The use of endoballoon occlusion has emerged in recent years as a safe and effective strategy to allow distal perfusion during FET repair. This technique minimizes or avoids the detrimental effects of hypothermia and systemic circulatory arrest and significantly reduces the operative times.Malvindi, PG; Alfonsi, J; Berretta, P; Cefarelli, M; Gatta, E; Di Eusanio, MMalvindi, Pg; Alfonsi, J; Berretta, P; Cefarelli, M; Gatta, E; Di Eusanio,

    SiO2 nanoparticles biocompatibility and their potential for gene delivery and silencing

    Get PDF
    Despite the extensive use of silica nanoparticles (SiO2NPs) in many fields, the results about their potential toxicity are still controversial. In this work, we have performed a systematic in vitro study to assess the biological impact of SiO2NPs, by investigating 3 different sizes (25, 60 and 115 nm) and 2 surface charges (positive and negative) of the nanoparticles in 5 cell lines (3 in adherence and 2 in suspension). We analyzed the cellular uptake and distribution of the NPs along with their possible effects on cell viability, membrane integrity and generation of reactive oxygen species (ROS). Experimental results show that all the investigated SiO2NPs do not induce detectable cytotoxic effects (up to 2.5 nM concentration) in all cell lines, and that cellular uptake is mediated by an endocytic process strongly dependent on the particle size and independent of its original surface charge, due to protein corona effects. Once having assessed the biocompatibility of SiO2NPs, we have evaluated their potential in gene delivery, showing their ability to silence specific protein expression. The results of this work indicate that monodisperse and stable SiO2NPs are not toxic, revealing their promising potential in various biomedical applications

    delivery of biologically active mir 34a in normal and cancer mammary epithelial cells by synthetic nanoparticles

    Get PDF
    Abstract Functional RNAs, such as microRNAs, are emerging as innovative tools in the treatment of aggressive and incurable cancers. In this study, we explore the potential of silica dioxide nanoparticles (SiO2NPs) in the delivery of biologically active miRNAs. Focusing on the tumor-suppressor miR-34a, we evaluated miRNAs delivery by SiO2NPs into the mammary gland, using in vitro as well as in vivo model systems. We showed that silica nanoparticles can efficiently deliver miR-34a into normal and cancer epithelial cells grown in culture without major signs of toxicity. Delivered miRNA retained the ability to silence artificial as well endogenous targets and can reduce the growth of mammospheres in 3D culture. Finally, miR-34a delivery through intra-tumor administration of SiO2NPs leads to a reduced mammary tumor growth. In conclusion, our studies suggest that silica nanoparticles can mediate the delivery of miR-34a directly into mammary tumors while preserving its molecular and biological activity

    Dissolution test for risk assessment of nanoparticles: a pilot study

    Get PDF
    Worldwide efforts are currently trying to produce effective risk assessment models for orally ingested nanoparticles. These tests should provide quantitative information on the bioaccessibility and bioavailability of products of biotransformation, such as dissolved ionic species and/or aggregates. In vitro dissolution tests might be useful for nanoparticle risk assessment, because of their potential to quantitatively monitor the changes of specific properties (e.g., dissolution, agglomeration, etc.), which are critical factors linked to bioaccessibility/bioavailability. Unfortunately, the technological advancement of such tools is currently hampered by the complexity and evolving nature of nanoparticle properties that are strongly influenced by the environment and are often difficult to trace in a standardized manner. Hence, the test's success depends on its ability to quantify such properties using standardized experimental conditions to mimic reality as closely as possible. Here we applied an in vitro dissolution test to quantify the dissolution of silver nanoparticles under dynamic conditions, which likely occur in human digestion, providing a clear description of the bioaccessible ionic species (free and matrix bound ions or soluble silver organic or inorganic complexes) occurring during the different digestion phases. We demonstrated the test feasibility using a multi-technique approach and following pre-standardized operational procedures to allow for a comprehensive description of the process as a whole. Moreover, this can favour data reliability for benchmarking. Finally, we showed how the estimated values of the bioaccessible ionic species relate to absorption and excretion parameters, as measured in vivo. The outcomes presented in this work highlight the potential regulatory role of the dissolution test for orally ingested nanoparticles and, although preliminary, experimentally demonstrate the regulatory oriented "read-across" principle

    The biocompatibility of amino functionalized CdSe/ZnS quantum-dot-Doped SiO2 nanoparticles with primary neural cells and their gene carrying performance.

    Get PDF
    Nanoparticles have an enormous potential for the development of applications in biomedicine such as gene or drug delivery. We developed and characterized NH(2) functionalized CdSe/ZnS quantum dot (QD)-doped SiO(2) nanoparticles (NPs) with both imaging and gene carrier capabilities. We show that QD-doped SiO(2) NPs are internalized by primary cortical neural cells without inducing cell death in vitro and in vivo. Moreover, the ability to bind, transport and release DNA into the cell allows GFP-plasmid transfection of NIH-3T3 and human neuroblastoma SH-SY5Y cell lines. QD-doped SiO(2) NPs properties make them a valuable tool for future nanomedicine application
    • …
    corecore