110 research outputs found

    Volcanology of the Lake Wanaka diatreme in the Alpine Dike Swarm, New Zealand

    Get PDF
    The Lake Wanaka diatreme represents an eroded Oligocene maar-diatreme volcano situated within the Alpine Dike Swarm, northwest Otago, New Zealand. Current levels of exposure display lithofacies that are characteristic of lower diatreme and root zone deposits. There are four main lithofacies exposed within the Lake Wanaka diatreme; (1) country-rock breccia, (2) lapilli tuff and tuff breccia, (3) schist megablocks, and (4) coherent lamprophyre. The country-rock breccia is monomict and composed of randomly orientated schist clasts millimetre to a metre in size with no juvenile material present. Lapilli tuff and tuff breccias are unbedded, poorly mixed, and clast-supported by juvenile pyroclasts. They contain common composite loaded pyroclasts with dispersed schist lithics within. The schist megablocks are large blocks of schist country-rock up to 4 m in size that protrude from cliffs of the coherent lamprophyre. The coherent lamprophyre is the most prominent rock within the diatreme, is typically columnar jointed, and contains xenoliths of schist and peridotite, plus amphibole megacrysts. The country-rock breccia represents the deposit of rock fall into an open cavity, sourced from weakened and unstable wall rock. The open cavity was created by explosions, probably thermohydraulic, within the root zone that drove volcanic material upwards, leaving behind a temporarily evacuated volume. Further volcanic activity produced shaking that led to the clasts of the country-rock breccia becoming tightly packed in places and caused brittle fragmentation at clast contacts. The large schist megablocks were slabbed off the vent wall, and accumulated on a ledge before becoming enveloped by the lamprophyre. Lapilli tuff and tuff breccia were primarily deposited as spatter. Local agglutination textures can be seen at the point contacts of some juvenile pyroclasts, implying they were above the minimum glass transition temperature. Fragmentation of the magma was driven by bubble bursts or more intensive lava fountaining inferred to have been driven by vapour explosions generated by magma-water interactions at depth. Abundant composite loaded juvenile pyroclasts formed when wall rock lithics were shed into the magma prior to, and during fragmentation. Void space that remained between clasts in the lapilli tuff deposit was later cemented by ankerite. Isotopic signatures of the ankerite suggest it was sourced from mixing between meteoric waters and atmospheric CO2. The columnar jointed coherent lamprophyre is interpreted to have been a late stage intrusive sill that entrained schist xenoliths of various sizes as it intruded the diatreme. Paleomagnetic determination of emplacement temperatures suggests that the lapilli tuff was deposited hot, above 580 °C and the same deposit was later reheated to 295–349 °C. A schist xenolith in the coherent lamprophyre was heated to a minimum of 630 °C. These results indicate high temperatures in the diatreme soon after lapilli tuff deposition, and later heating when a nearby lamprophyre sill was intruded

    Adapting meshfree Galerkin schemes for representing highly anisotropic fields

    Get PDF
    Two methods for representing highly anisotropic fields are presented, based on partially and fully meshfree Galerkin formulations. In both, a mapping function is used to provide information about the local direction of the anisotropy, with one of the global coordinates chosen to parameterise the ‘parallel’ position along the mapping in a one-to-one manner. In the first method, dubbed FCIFEM, standard unstructured finite element meshes are used on planes of constant parallel coordinate to represent the necessary small-scale variations perpendicular to the mapping direction, with large spacings then possible between these planes because of the small variation along the mapping. This greatly reduces the number of degrees of freedom required to represent fields in this space and the associated computational cost of simulations involving such fields. No mesh connectivity is defined between planes, and field-aligned basis functions are constructed using the mapping function to extend the standard finite element bases into the full domain. In the second method, dubbed FCIMLS, the meshfree moving least squares (MLS) formalism is used to compute bases capable of representing arbitrarily high-order polynomials. A similar arrangement of nodes into distantly spaced planes is used to help ensure full domain coverage, but now with no defined mesh connectivity required between any nodes. Integration of the bases is addressed with reference to methods developed for other fully meshfree methods, and the schemes (as well as other similar element-free Galerkin schemes) are shown to be locally conservative under certain conditions. Prototype code is developed in Python and used to validate the methods with robust convergence of several test problems being demonstrated. A significant decrease in the number of degrees of freedom required for a given level of accuracy is achieved for model problems with a moderate degree of anisotropy

    Appropriateness of antibiotic prescribing in the Emergency Department

    Get PDF
    Background Antibiotics are some of the most commonly prescribed drugs in the Emergency Department (ED) and yet data describing the overall appropriateness of antibiotic prescribing in the ED is scarce. Objectives To describe the appropriateness of antibiotic prescribing in the ED. Methods A retrospective, observational study of current practice. All patients who presented to the ED during the study period and were prescribed at least one antibiotic were included. Specialists from Infectious Disease, Microbiology and Emergency Medicine and a Senior Pharmacist assessed antibiotic appropriateness against evidence-based guidelines. Results A total of 1019 (13.6%) of patient presentations involved the prescription of at least one antibiotic. Of these, 640 (62.8%) antibiotic prescriptions were assessed as appropriate, 333 (32.7%) were assessed as inappropriate and 46 (4.5%) were deemed to be not assessable. Adults were more likely to receive an inappropriate antibiotic prescription than children (36.9% versus 22.9%; difference 14.1%, 95% CI 7.2%–21.0%). Patients who met quick Sepsis-related Organ Failure Assessment (qSOFA) criteria were more likely to be prescribed inappropriate antibiotics (56.7% versus 36.1%; difference 20.5%, 95% CI, 2.4%–38.7%). There was no difference in the incidence of appropriate antibiotic prescribing based on patient gender, disposition (admitted/discharged), reason for antibiotic administration (treatment/prophylaxis) or time of shift (day/night). Conclusions Inappropriate administration of antibiotics can lead to unnecessary adverse events, treatment failure and antimicrobial resistance. With over one in three antibiotic prescriptions in the ED being assessed as inappropriate, there is a pressing need to develop initiatives to improve antibiotic prescribing to prevent antibiotic-associated patient and community harms.No Full Tex

    Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle

    Get PDF
    AbstractWe have previously demonstrated that quercetin, a bioflavonoid, blocks hepatitis C virus (HCV) proliferation by inhibiting NS5A-driven internal ribosomal entry site (IRES)-mediated translation of the viral genome. Here, we investigate the mechanisms of antiviral activity of quercetin and six additional bioflavonoids. We demonstrate that catechin, naringenin, and quercetin possess significant antiviral activity, with no associated cytotoxicity. Infectious virion secretion was not significantly altered by these bioflavonoids. Catechin and naringenin demonstrated stronger inhibition of infectious virion assembly compared to quercetin. Quercetin markedly blocked viral translation whereas catechin and naringenin demonstrated mild activity. Similarly quercetin completely blocked NS5A-augmented IRES-mediated translation in an IRES reporter assay, whereas catechin and naringenin had only a mild effect. Moreover, quercetin differentially inhibited HSP70 induction compared to catechin and naringenin. Thus, the antiviral activity of these bioflavonoids is mediated through different mechanisms. Therefore combination of these bioflavonoids may act synergistically against HCV

    Scatter signatures in SFDI data enable breast surgical margin delineation via ensemble learning

    Get PDF
    Margin assessment in gross pathology is becoming feasible as various explanatory deep learning-powered methods are able to obtain models for macroscopic textural information, tissue microstructure, and local surface optical properties. Unfortunately, each different method seems to lack enough diagnostic power to perform an adequate classification on its own. This work proposes using several separately trained deep convolutional networks, and averaging their responses, in order to achieve a better margin assessment. Qualitative leave-one-out cross-validation results are discussed for a cohort of 70 samples.Spanish Ministry of Science, Innovation and Universities (FIS2010-19860, TEC2016-76021-C2-2-R), Spanish Ministry of Economy, Industry and Competitiveness and Instituto de Salud Carlos III (DTS17-00055, DTS15- 00238), Instituto de Investigación Valdecilla (INNVAL16/02, INNVAL18/23), Spanish Ministry of Education, Culture, and Sports (FPU16/05705)

    Automated surgical margin assessment in breast conserving surgery using SFDI with ensembles of self-confident deep convolutional networks

    Get PDF
    With an adequate tissue dataset, supervised classification of tissue optical properties can be achieved in SFDI images of breast cancer lumpectomies with deep convolutional networks. Nevertheless, the use of a black-box classifier in current ex vivo setups provides output diagnostic images that are inevitably bound to show misclassified areas due to inter- and intra-patient variability that could potentially be misinterpreted in a real clinical setting. This work proposes the use of a novel architecture, the self-introspective classifier, where part of the model is dedicated to estimating its own expected classification error. The model can be used to generate metrics of self-confidence for a given classification problem, which can then be employed to show how much the network is familiar with the new incoming data. A heterogenous ensemble of four deep convolutional models with self-confidence, each sensitive to a different spatial scale of features, is tested on a cohort of 70 specimens, achieving a global leave-one-out cross-validation accuracy of up to 81%, while being able to explain where in the output classification image the system is most confident.Spanish Ministry of Science, Innovation and Universities (FIS2010-19860, TEC2016-76021-C2-2-R), Spanish Ministry of Economy, Industry and Competitiveness and Instituto de Salud Carlos III (DTS17-00055, DTS15- 00238), Instituto de Investigación Valdecilla (INNVAL16/02, INNVAL18/23), Spanish Ministry of Education, Culture, and Sports (FPU16/05705)

    Modeling and synthesis of breast cancer optical property signatures with generative models

    Get PDF
    Is it possible to find deterministic relationships between optical measurements and pathophysiology in an unsupervised manner and based on data alone? Optical property quantification is a rapidly growing biomedical imaging technique for characterizing biological tissues that shows promise in a range of clinical applications, such as intraoperative breast-conserving surgery margin assessment. However, translating tissue optical properties to clinical pathology information is still a cumbersome problem due to, amongst other things, inter- and intrapatient variability, calibration, and ultimately the nonlinear behavior of light in turbid media. These challenges limit the ability of standard statistical methods to generate a simple model of pathology, requiring more advanced algorithms. We present a data-driven, nonlinear model of breast cancer pathology for real-time margin assessment of resected samples using optical properties derived from spatial frequency domain imaging data. A series of deep neural network models are employed to obtain sets of latent embeddings that relate optical data signatures to the underlying tissue pathology in a tractable manner. These self-explanatory models can translate absorption and scattering properties measured from pathology, while also being able to synthesize new data. The method was tested on a total of 70 resected breast tissue samples containing 137 regions of interest, achieving rapid optical property modeling with errors only limited by current semi-empirical models, allowing for mass sample synthesis and providing a systematic understanding of dataset properties, paving the way for deep automated margin assessment algorithms using structured light imaging or, in principle, any other optical imaging technique seeking modeling. Code is available.This work was supported in part by the National Cancer Institute, US National Institutes of Health, under grants R01 CA192803 and F31 CA196308, by the Spanish Ministry of Science and Innovation under grant FIS2010-19860, by the Spanish Ministry of Science, Innovation and Universities under grants TEC2016-76021-C2-2-R and PID2019-107270RB-C21, by the Spanish Minstry of Economy, Industry and Competitiveness and Instituto de Salud Carlos III via DTS17-00055, by IDIVAL under grants INNVAL 16/02, and INNVAL 18/23, and by the Spanish Ministry of Education, Culture, and Sports with PhD grant FPU16/05705, as well as FEDER funds

    1/N Effects in Non-Relativistic Gauge-Gravity Duality

    Full text link
    We argue that higher-curvature terms in the gravitational Lagrangian lead, via non-relativistic gauge-gravity duality, to finite renormalization of the dynamical exponent of the dual conformal field theory. Our argument includes a proof of the non-renormalization of the Schrodinger and Lifshitz metrics beyond rescalings of their parameters, directly generalizing the AdS case. We use this effect to construct string-theory duals of non-relativistic critical systems with non-integer dynamical exponents, then use these duals to predict the viscosity/entropy ratios of these systems. The predicted values weakly violate the KSS bound.Comment: 26 pages, late

    A Fat Higgs with a Magnetic Personality

    Get PDF
    We introduce a novel composite Higgs theory based on confining supersymmetric QCD. Supersymmetric duality plays a key role in this construction, with a "fat" Higgs boson emerging as a dual magnetic degree of freedom charged under the dual magnetic gauge group. Due to spontaneous color-flavor locking in the infrared, the electroweak gauge symmetry is aligned with the dual magnetic gauge group, allowing large Yukawa couplings between elementary matter fields and the composite Higgs. At the same time, this theory exhibits metastable supersymmetry breaking, leading to low-scale gauge mediation via composite messengers. The Higgs boson is heavier than in minimal supersymmetric theories, due to non-decoupling D-terms and a large F-term quartic coupling. This theory predicts quasi-stable TeV-scale pseudo-modulini, some of which are charged under standard model color, possibly giving rise to long-lived R-hadrons at the LHC.Comment: 33 pages, 6 figures, 6 table

    Ultrasound assessment of the lateral collateral ligamentous complex of the elbow: imaging aspects in cadavers and normal volunteers

    Get PDF
    OBJECTIVE: The Lateral Collateral Ligamentous complex (LCL) is an important stabiliser of the elbow. It has a Y-shaped structure with three components. In this study, we sought to describe the ultrasound aspect of the individual components of this ligamentous complex and to evaluate the performance of ultrasound in both cadavers and in normal subjects. METHODS: Ten cadaveric elbow specimens underwent high-frequency ultrasound. Two specimens were sliced and two were dissected for anatomical correlation. Ten elbows of normal subjects were also evaluated by ultrasound. The findings were compared. RESULTS: The three components of the LCL could be visualised in all specimens and normal subjects with the exception of the proximal portion of one specimen. In 80% of the specimens and 100% of the healthy volunteers the proximal portion of the LCL could be separated from the extensor tendons. CONCLUSION: High-resolution ultrasound can assess all components of the LCL of the elbow and can distinguish them from surrounding structures
    corecore