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Abstract—Is it possible to find deterministic relationships
between optical measurements and pathophysiology in an un-
supervised manner and based on data alone? Optical property
quantification is a rapidly growing biomedical imaging technique
for characterizing biological tissues that shows promise in a range
of clinical applications, such as intraoperative breast-conserving
surgery margin assessment. However, translating tissue optical
properties to clinical pathology information is still a cumbersome
problem due to, amongst other things, inter- and intrapatient
variability, calibration, and ultimately the nonlinear behavior
of light in turbid media. These challenges limit the ability
of standard statistical methods to generate a simple model of
pathology, requiring more advanced algorithms. We present a
data-driven, nonlinear model of breast cancer pathology for
real-time margin assessment of resected samples using optical
properties derived from spatial frequency domain imaging data.
A series of deep neural network models are employed to obtain
sets of latent embeddings that relate optical data signatures to
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the underlying tissue pathology in a tractable manner. These
self-explanatory models can translate absorption and scattering
properties measured from pathology, while also being able to
synthesize new data. The method was tested on a total of 70
resected breast tissue samples containing 137 regions of interest,
achieving rapid optical property modeling with errors only
limited by current semi-empirical models, allowing for mass
sample synthesis and providing a systematic understanding of
dataset properties, paving the way for deep automated margin
assessment algorithms using structured light imaging or, in
principle, any other optical imaging technique seeking modeling.
Code is available.

Index Terms—Biomedical optical imaging, breast cancer, tissue
optical properties, modeling, pathology, deep learning, dimen-
sionality reduction, variational autoencoder, convolutional neural
networks.

I. INTRODUCTION

IN the past two decades, breast-conserving surgery (BCS)
has become the most common procedure in the treatment

of early invasive breast cancer, with clinical results similar to
[1] or better [2] than those achieved via full mastectomy. In
BCS, the tumor is extracted with a surrounding layer of healthy
tissue (i.e. the surgical margin of the tumor). Tumor margins
are visually evaluated by the surgeon and a pathologist during
the resection process, and whether margins are cancer-free is
determinant to the success of a given operation. Such visual
assessment is referred to as the intraoperative gross examina-
tion of the resected sample. The lumpectomy sample is then
processed by a histopathologist, who provides a final veredict
on the prognosis of each case, hours or days afterwards.
Unfortunately, about 20% to 40% of patients that undergo
BCS treatment require two or more re-excision procedures
[3], [4]; this percentage appears to be, among other things, in-
versely proportional to surgeon case volume [5]. This accuracy
mismatch between gross examination and histological analysis
calls for finding automated and/or standardized intraoperative
margin assessment methods that can reduce current re-excision
rates, by enhancing any surgeon’s ability to detect whether
BCS resection margins are cancer-free.

Currently, two-dimensional projection X-ray imaging is
commonplace for intraoperative margin assessment during
breast-conserving surgeries, but the margins normal to the
imaging axis are occluded from view, and peripheral margins
may be poorly resolved. Recent studies have explored the
value of three-dimensional X-ray micro-computed tomogra-
phy [6] and tomosynthesis [7] for intraoperative volumetric

Authorized licensed use limited to: BIBLIOTECA DE LA UNIVERSIDAD DE CANTABRIA. Downloaded on March 11,2021 at 07:05:14 UTC from IEEE Xplore.  Restrictions apply. 



0278-0062 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2021.3064464, IEEE
Transactions on Medical Imaging

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. ?, NO. ?, MARCH 2021 2

specimen scanning. X-ray imaging provides excellent contrast
between tumor and adipose tissue but lacks contrast between
tumor and fibroglandular tissue that may be important for clin-
ical decision making [8]. Thus, the BCS clinical environment
is already acclimated to intraoperative imaging in an X-ray
cabinet located in the surgical suite, and a rapid, wide field-
of-view optical imaging solution could feasibly integrate with
X-ray imaging already in place to improve sensitivity to key
tissue subtypes.

Spatial frequency domain imaging (SFDI) shows poten-
tial for improving intraoperative margin assessment in this
setting. Also known as wide-field structured light imaging,
SFDI is a wide-field-of-view, optical imaging technique that
involves projecting a series of one-dimensional sinusoidal
fringe patterns at various spatial frequencies and wavelengths
of light. By modifying the spatial frequency, wavelength, and
phase of the fringe patterns, and after adequate demodulation,
the medium’s response function is captured in the form of
backscattered radiation [9], [10]. Using a diffuse or sub-diffuse
light transport model, demodulated SFDI data can be used
to quantify bulk optical properties (OPs) in a turbid medium
[10], [11]. Absorption coefficient quantification at multiple
optical wavelengths can be used to derive biological chro-
mophore concentrations [10]. Another use of SFDI involves
using different spatial frequencies of illumination to depth-
resolve section samples, allowing for tomographic imaging
[12]. SFDI has seen, in the past decade, its full development
from an experimental procedure into a mature modality, with
numerous calibration and error-correction methods [13], [14].
Recently, an SFDI system for the measurement of tissue
oxygenation in patients with potential circulatory compromise
gained U.S. Food and Drug Administration (FDA) clearance
[15]. Several other SFDI techniques have emerged, most of
which rely on numerical approximations for the behavior
of light as it traverses through layered turbid media, i.e.,
enforcing assumptions and simplifying the Radiative Transfer
Equation (RTE). Examples of these techniques include sub-
diffuse SFDI for imaging surface tissue structure [16], single-
snapshot imaging (SSOP) [17], qF-SSOP for fluorescence
imaging [18], Diffuse Optical Tomography (DOT) [19] and
Multispectral Optoacoustic Tomography (MSOT) [20]. All
these techniques are currently undergoing various clinical
studies, where OP quantification shows to be promising in
estimating microstructural and molecular properties with some
implications on modeling pathology. Notable use cases for
SFDI in particular include the evaluation of burn depth and
severity [21], [22], skin flap oxygen saturation monitoring
during surgery [22], arterial occlusion detection [23], vascular
assessment of diabetic foot revascularization [24], skin dis-
ease response to laser therapy [25], quantitative mapping of
surgically resected breast tissues [26], [27] and skin cancer
[28], [29], proving that there can be measurable optical,
structural, and molecular differences between different tissues
and pathologies. However, little work focuses on unsupervised,
nonlinear modeling of optical pathophysiology, resulting in
great, directed efforts to parameterize and predict disease given
a dataset of labeled measurements, while potentially failing to
harness the true diagnostic power of a given imaging modality.

The vast amount of information provided by SFDI methods,
and the fact the relationship between OPs and image data
is highly nonlinear, have prompted the generation of new
analytical models [30], as well as the use of deep learning
for estimating tissue properties. In the latter case, algorithms
can approximate complex nonlinear functions by concatenat-
ing distributed, atomic operations called ’units’ and applying
automatic differentiation (i.e., backpropagation) on data input-
output pairs to gradually generate a function that can relate
them [31]. Methods such as lookup-table (LUT) OP extraction
have proven less precise at extracting reduced scattering (µ′s)
and absorption (µa) coefficients than well-trained deep neural
network models [32], [33]. Recently, Conditional Generative
Adversarial Networks (cGAN) have been used to improve
optical properties estimates from single-snapshot images [34].
These methods effectively solve simplified inverse light dif-
fusion problems when compared to state-of-the-art solutions
[35], while attempting to correct artifacts. All of these various
clinical studies, deep learning classifiers and optical property
estimators suggest their combination into a single framework,
i.e. a deep learning system that can bidirectionally cross-
reference and translate OPs to (and from) pathology. Here,
we will consider four problem domains in total, namely (1)
the space of possible optical signatures, (2) a representation
of this space in a few dimensions, (3) the domain of possible
pathologies, and (4) the domain of physical, optical properties
in tissues. This work constitutes the first use of data-driven
generative models for the analysis and synthesis of breast
cancer SFDI data, showing that it is possible to find a
tractable non-linear relationship between the wide-field data
and tissue pathophysiology, recently observed via multiphoton
microscopy [36]. The generative toolkit, which could be
applied to other nonlinear imaging modalities, may enable
future objectives such as margin delineation and real-time
pathology assessment of resected samples within milliseconds,
potentially reducing the number of follow-up re-excisions in
current lumpectomy interventions.

II. MATERIALS AND METHODS

A. Breast tissue dataset

The SFDI dataset consists of 70 freshly resected BCS
tissue samples, imaged in order of arrival with a multimodal
scanning device at the Dartmouth Hitchcock Medical Center
(DHMC) in Lebanon, New Hampshire. Each BCS sample
was cut into ∼5-mm thick ”bread-loafed” slices of tissue,
following protocol approved by the Internal Review Board
at DHMC. After resection, one of the cuts was positioned
between two optically-clear acrylic plates, each 1/8th of an
inch in thickness. The assembly was held together by elastic
bands and placed inside a custom-built micro-CT/SFDI device
for imaging [37]. After image acquisition, all thick slices
were processed as per standard protocol in hematoxylin and
eosin (H&E) stain imaging. Analysis of histopathological
slides was performed by an expert pathologist, who delineated
regions of interest (ROIs) on the H&E images associated with
distinct tissue subtypes. These ROIs were then conservatively
co-registered with wide-field-of-view SFDI data. Each BCS
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Fig. 1. Two lumpectomy samples from the breast tissue dataset, namely samples 23 (top row) and 16 (bottom row). Structured light imaging reveals hidden
textural contrast as a function of spatial frequency. Each of the specimens is accompanied by a set of Regions of Interest with known properties (a, f). Here,
color reconstructions of demodulated reflectance data for f = 0.0 (b, h), f = 0.15 (c, i), f = 0.61 (d, j), and f = 1.37 mm−1 (e, k) are shown to present
how textural properties evolve as a function of the spatial frequency of the projected patterns. Best viewed in color.

sample is thus represented by SFDI data that is validated by
gold standard histopathological information. Importantly, the
ROIs in the sliced BCS samples imaged in this study do not
represent real margins of excised tumors; instead, they simply
highlight breast tissue heterogeneity and identify areas where
tissue categories are certain. The SFDI data associated with
each BCS sample includes 16 1024 × 1024-pixel reflectance
images, corresponding to 4 spatial frequencies sampled at
4 different wavelengths, namely fx = {0., 0.15, 0.61, 1.37}
mm−1 and λ = {490, 550, 600, 700} nm. Spatial resolution is
0.128 mm per pixel. A total of 136 tissue ROIs are available,
with 15 distinct tissue pathologies in total, presenting in
different ratios. Table I shows a detailed description of each
of the tissue subtypes, samples, and ROIs imaged.

SFDI images, as presented in Fig. 1, provide information
that could not be obtained via conventional multispectral
acquisition. By demodulating high spatial frequency patterns,
it is possible to eliminate image blurring due to light diffu-
sion within the sample, resulting in decreased sensitivity to
absorption and increased sensitivity to backscattering from
the surface layer of tissue [16]. Sub-diffuse SFDI imaging
enhances contrast to Rayleigh-type scatterers in surface tis-
sues, which are mainly collagen fibrils and striations that may
or may not be associated with disease [38]. This suggests
that specific tissue types could respond distinctively to spatial
frequency modulation, while other diseases could be detected
through this contrast improvement. For example, some specific
pathologies reveal an inherent texture at high frequencies
that cannot be observed in the low-frequency domain, further
facilitating differentiability [39], [40]. This is notably visible
in Figs. 1.(e) and (k), which show demodulated images at high
spatial resolution (fx = 1.37 mm−1). As the spatial frequency
increases, contrast is enhanced to tumor-associated collagen
structures. From now on, we will refer to scatter signatures
as any behavior characteristic of a specific pathology, in terms

of both textural and spectral/spatial-frequency information.
We seek to find the scatter signatures of most, if not all,
pathologies typically present in BCS interventions, and the
similarities between them, which may hinder diagnosis for
margin delineation algorithms.

TABLE I
NUMBER OF DATASET SAMPLES, ROIS, AND PIXELS

Tissue subtype Samples with ROI n Total pixels
Background 2–5, 7, 9–12, 15, 16, 19–

21, 23–25, 27, 29, 30, 31–
33, 36, 39, 41, 42, 46, 49,
51–53, 55, 56, 57, 59, 60,
63, 64, 67

40 10,693,158

Adipose Tissue 2–5, 8, 9, 11, 12, 14, 16,
17, 22, 26, 28, 30, 34, 37,
39–42, 44, 45, 47–54, 58–
60, 63, 64, 67, 69, 70

39 158,070

Connective Tissue 6, 8, 12, 13, 22, 23, 33,
35, 40, 43, 47–50, 52, 53,
55, 58, 60, 63, 64, 65

22 89,470

Myofibroblastic 38 1 11,522
Benign Phyllodes 57 1 19,201
Normal Treated 20 1 20,740
Fibroadenoma 1, 19, 27, 32 4 45,350
Fibrocystic Disease 4, 5, 7, 9, 11, 32, 36 7 61,907
IDC (Low Grade) 12, 17, 28, 40, 47, 50, 51,

54, 61, 65, 68
11 21,137

IDC (Interm. Grade) 6, 8, 13, 29, 30, 33, 35,
36, 37, 41, 42, 53, 58, 63,
66, 67, 70

17 44,219

IDC (High Grade) 5, 16, 23, 24, 25, 39, 46,
56, 59, 64

10 70,520

ILC 2, 4, 21, 22, 26, 45, 48,
49, 52, 55

10 53,612

DCIS 3, 18, 31, 34, 37, 44, 62 7 26,119
Mucinous 10, 14, 43, 60 4 26,348
Tubular 11, 69 2 3,347
Metaplastic 15 1 18,955
Total non-background 70 137 670,517
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B. Patch dataset production

Due to the limited number of available samples, and ROI
pixels per sample, this preemptive study merely seeks to
analyze the local texture and optical properties of SFDI images
of breast cancer. Thus, a patch extraction algorithm was
designed for balanced dataset production. A general outline
of the process is depicted in Fig. 2. Specific tissue category
quotas are initially specified for each of the known available
tissue classes (12,000 patches per supercategory, resulting in
a dataset of 60,000 patches). Then, a random population sub-
sampling method is run iteratively until the quota is satisfied.
The method proceeds as follows. First, a sample among those
presenting with a specific tissue type is selected at random.
Then, a random location within the ROI is selected. At this
location, a square patch 31×31 pixels is extracted. The patch
is also randomly rotated, uniformly in the range [0◦, 360◦]
as is typical in dataset augmentation. Additional metadata is
also included, namely (1) the specimen reference number,
(2) the corresponding tissue category, and (3) its location
within the ROI. The specific class is one-hot encoded to
feed the classifier network later on. This process is repeated
until the required amount of patches is obtained, guaranteeing
a balanced dataset irrespective of the relative frequency of
specific pathologies. The total number of patches per sample
and ROI was kept under 500 (on average) to avoid redundancy
in the training set. Additional measures were taken to ensure
that miscalibrated or undesired data were not provided to
the networks. Miscalibrated patches, i.e. data with reflectance
outside of the range Rvalid ∈ [0, 0.99], were automatically
discarded from the generated dataset during training and
validation. Finally, the fifteen categories were summarized into
five main supercategories (shown in Table II), as discovered
through previous successful classification experiments [41].
The initial objective of this work is to separate adipose tissue,
collagen and elastin in connective tissue, benign growths,
and malignant tumors. Additionally, Fibrocystic Disease (FD)
should exhibit a certain connection with connective tissue and
benign growths, since these particular tissue types are present
in the disease.

TABLE II
TISSUE SUPERCATEGORIES AND TOTAL NUMBER OF ROIS.

Tissue group Tissue subtypes n

Adipose Adipose 39
Connective Connective Tissue 22
Benign Fibroadenoma, Myofibroblastic,

Benign Phyllodes
6

Fibrocystic Disease Fibrocystic Disease 7
Malignant IDC (Low Grade), IDC (Interm.

Grade), IDC (High Grade), ILC,
DCIS, Mucinous, Tubular, Meta-
plastic

62

Total 70 samples 136 ROIs

C. The neural network pipeline

To connect the four domains described in Section I (In-
troduction), a series of neural networks must be prepared
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Fig. 2. General summary of the complete data extraction protocol. Each
specimen is visually inspected (a) and co-registered with H&E stain histology
data (b). This analysis results in conservative, manually-generated Regions
of Interest (c) which are then uniformly sampled and filtered depending on
additional requirements (d). Best viewed in color.

and trained. Fig. 3 presents a schematic that connects each
of the domains of interest. First, a primary autoencoder
with sufficient capacity –Fig. 3.(a)– is used to first com-
press textural and spectral/spatial-frequency data r into low-
dimensional keywords z ∈ Rm. This first model must be
capable of reproducing textural information with sufficient
fidelity, which will be measured in terms of a reconstruction
loss that compares the input patches r ∈ Rnx×ny×nch , with
the reconstructed output r̂ ∈ Rnx×ny×nch at the other side
of the bottleneck, L(r, r̂), where nx and ny are the width
and height in pixels, respectively, and nch is the number of
input channels (nch = nλnfx , with nλ number of wave-
lengths and nfx number of spatial frequencies per wavelength).
This network is a skip-connection convolutional variational
autoencoder with an auxiliary discriminator; it is composed
of encoder qθ(z|r) and decoder pφ(r|z). Similar schematics
have been previously shown to improve reconstruction quality
when compared to L2 distances for natural images [42], [43].
Once high-dimensional textural and spectral information is
compressed into low-dimensional keywords, an optional next
step is to produce a human-interpretable representation. This
can be achieved with a secondary autoencoder, depicted in Fig.
3.(b). The network is a multi-layer perceptron MMD-VAE [44]
with skip connections [45]. The rich encoding at the primary
autoencoder’s bottleneck can be used for classification, as per
Fig. 3.(c). Diagnostic accuracy was used here as a measure of
separability at the keyword level, z. This is done via an ad-
ditional neural network, namely a multi-layer perceptron with
skip connections, which allows the translation of keywords z
into known pathology classes ŷ.

Sample generation is achieved with a stack of skip-
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Fig. 3. Network setup for the four domain problem. (a) Reflectance data r is introduced into a primary autoencoder (i.e. r → z → r̂), generating a
low-dimensional translation of spectral and spatial data. (b) A secondary autoencoder z → z′ → ẑ transforms this first domain into a two-dimensional domain
z′, where the dataset can be represented. The same codeword z can be used for classification (c). Conditional sample generation is achieved with a set of
small multilayer perceptron Least-Squares GANs (d), with multiple decoders to avoid mode collapse (e). Optical properties estimation is achieved via an
MLP non-linear regressor, which is trained with domain randomization, using spectra generated by giving random OP values to a deterministic semi-empirical
function (f). The following paths represent each of the objectives in Fig. 1, as follows: AB (Feature Extraction), ABEF (Visualization), ABG (Classification),
H0/.../HnCD (Generation), AA′J (pixel-wise OP estimation). Black arrows are real connections in the graph, while orange connections represent copying
operations.

connected MLP Least-Squares Generative Adversarial Net-
works (LS-GAN) [46] which are trained on class-specific
bottleneck keywords. Let H0, . . . ,Hncls−1 be each of the
possible hypotheses (tissue categories), with ncls the total
number of categories. Each LS-GAN is trained only with the
fraction of the learned keywords that belong to a specific
tissue category, which can be seen as a conditional variable
z|Hk, with Hk the tissue type to be generated by that
GAN. One single LS-GAN has an ensemble of Ndisc = 10
discriminators and one generator, which is known to reduce
mode collapse [47]. Gaussian noise n ∼ N (0, σ) is injected
into the input of the discriminators and σ is annealed towards
zero during training to further regularize the generator [48].
This modular approach allows us to employ the same feature
extraction network for conditional generation of pathology-
specific keywords without requiring re-training of larger mod-
els. Learned textural features can consequently be reused with
each independent generator. Lastly, OP estimation is achieved
via uniform random sampling of the forward, semi-empirical
model of reflectance in the spatial frequency domain, further
explained in the Supplementary Material, Section S.I.A. The
specifics of the method are explained in Section II-D.

D. Optical properties estimation via input randomization

We apply previous existing work from Zhao et al. [32]
and Stier et al. [33], but with a hybrid forward model that
combines diffuse and sub-diffuse regimes. The forward model
is governed by the following equation:

R(fx, λ) =

{
Rd(fx, λ;µ

′
s, µa), fx ≤ 0.2 mm−1,

Rd,sd(fx, λ;µ
′
s, γ) fx ≥ 0.5 mm−1,

(1)

where Rd corresponds to the diffuse approximation of the
RTE [10], and Rd, sd is the semi-empirical approximation
of sub-diffuse behavior used by McClatchy et al., [38] for
wide-field imaging. The former is a function of the reduced
scattering coefficient µ′s and the absorption coefficient µa,

while the latter is dependent on µ′s and a phase function
parameter γ (technical specifications are provided in the
Supplementary Material). Inverse function learning is illus-
trated in Fig. 3.(f). For this particular setup, Equation 1
was prepared to return a spectrum Rd(fx;µ

′
s, µa, γ) from a

given triplet of input parameters (µ′s, µa, γ). This constitutes
the direct model f : (µ′s, µa, γ) → Rd(fx). The inverse
model f−1 : Rd → (µ′s, µa, γ) is produced with a neural
network, which is trained with a synthetic dataset of optical
properties and reflectance pairs. The output of the forward
model is given to the input of the optical properties estimator
network, and the network is expected to return the exact
parameters that produced such reflectance curve. This inverse
operation requires minimizing the mean square error (MSE)
between the actual value y and the network’s estimate ŷ.
Optical property estimation inputs were established within
well-known value ranges: µ′s ∈ [0.01, 4.0] ⊃ [0.4, 1.8] mm−1,
γ ∈ [1.0, 4.0] ⊃ [1.4, 2.2] mm−1 as per Kanick et al. [11]
and McClatchy et al. [38]; and µa ∈ [0.01, 4.0] mm−1 and
n = 1.4 as per Jacques [49] and Cuccia et al. [10]. Relevantly,
reflectance data must be monotonically decreasing with respect
to spatial frequency [9], [10], [38], [50]. This is not guaranteed
for every possible triplet of (µ′s, µa, γ) in the aforementioned
ranges when combining the diffuse and sub-diffuse models, as
the subdiffuse model does not consider absorption, potentially
resulting in a curve that is not monotonically decreasing. For
those values, such a curve is not physically possible, and hence
it makes no sense to use those combinations of OP values
in training. Thus, in order to train a proper model that does
not misinterpret the presence of noise or miscalibrated data as
physically implausible optical properties, values for (µ′s, µa, γ)
that did not result in a monotonically decreasing Rd(fx) were
discarded from the training and test sets. As a result, the
network must find a combination of optical properties that
fits the data and, simultaneously, results in a feasible curve.
The network was trained on a synthetic dataset of 27 × 106
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TABLE III
SIMULATIONS AND TRAINING SCHEDULES

Parameter (1) Competition (2) Primary AE (3) Secondary AE (4) Classifier (5) OP learning (6) LS-GAN

Training mode Fixed lr with
linear decay

Fixed lr with
linear decay

Fixed lr with
linear decay

One-cycle policy One-cycle policy Fixed lr with
linear decay

Learning rate lr 1× 10−5 to 0.0 1× 10−5 to 0.0 1× 10−4 to 0.0 - - 2× 10−5 to 0.0

Warmup (iters) 0 0 0 50× 103 500× 103 0
Cooldown (iters) 150× 103 150× 103 100× 103 50× 103 500× 103 250× 103

Minibatch size 16 16 128 16 32 128
No. of iterations 300× 103 300× 103 900× 103 100× 103 2× 106 500× 103

Cycle size T - - - (100× 103) (1× 106) -
No. of cycles - - - 1 1 -
lr range (min, max) - - - [0.0, 1.0× 10−4] [0.0, 1.0× 10−4] -

Optimizer Adam Adam Adam Adam Adam Adam
Instance noise (GAN) σ = 0.3

Evaluation Every 1k iters Every 1k iters Every 1k iters Every 1k iters Every 1k iters Every 1k iters
β (AEs only) 1.0 1.0 1.0 - - -

Dropout rate 5% 5% 5% 10% 10% -
Patience (early stop) - - - 50 epoch, accuracy 50 epoch, MSE -
Train time per model ∼ 3 to ∼ 21h,

model-dependent
∼ 21h ∼ 2 h 40 min ∼ 5 min 1 h, ∼ 50 min ∼ 6 h, 30 min
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Fig. 4. Bottleneck clamping for dimensionality reduction. Schematic analo-
gous to [51] but for all coordinates in a bottleneck. (a) Process for generating
words of length 3 (i.e. training the third unit in z) in a primary bottleneck with
nz = 5. (b) Forward step, showcasing which values are transmitted to the
decoder. Units past the third one are zeroed out. (b) Gradient backpropagation
of the given keyword. The gradient is cut for all coordinates except the one
under training, thus in this step the encoder must modify the third coordinate
to improve the reconstruction error given previous unit values. Each unit is
trained stochastically within a given minibatch. After training, all units in the
bottleneck are left unclamped.

uniformly spaced points (300 × 300 × 300 grid) and tested
on a sparser grid of 216,000 points (60× 60× 60 grid) until
reaching a test MSE of 10−4, at least two orders of magnitude
below the estimation errors inherent to the direct OP model
[38], and equivalent to 1–5% MSE at the lowest reflectance
values.

E. Bottleneck clamping

Generally, neural networks have fixed architectures that
remain constant across training and inference. This implies
that an autoencoder with a fixed bottleneck size will use
all of its units to represent data. This contrasts with typical
dimensionality reduction methods such as the Singular Value
Decomposition (SVD) and/or Principal Components Analysis
(PCA), where the size of the latent space can be chosen from
a set of basis vectors. In these settings, the higher the number
of vectors, the better reconstructions will be. To achieve a
similar effect, the primary autoencoder employed a variant
of bottleneck clamping, a technique used differently in other
works [51] to restrict the content available at the bottleneck
during training. In the proposed variant, clamping is performed
by the gradients backpropagating towards the encoder for one
or multiple units in z. In our particular case, we clamped
the bottleneck stochastically, as shown in Fig. 4, so that for
a given minibatch, the k-th unit is selected at random and
trained to improve upon the reconstruction provided by the
(k−1) previous bottleneck units, by establishing the following
optimization problem:

minimize
θ,φ

L (r̂, r)

subject to
∂L
∂zi

= 0, ∀i 6= k.

zi = 0, ∀i > k.

(2)

A summarized schematic of the TensorFlow implementation
is provided in Fig. 4. By changing k stochastically, the
model attempts to minimize all the optimization problems in
Equation 2 simultaneously. In general terms, the algorithm
attempts to replicate the SVD but with a nonlinear network,
where each individual unit is forced to improve the current
reconstruction error by adding more information. This results
in the network indirectly reserving parts of its capacity to
solving each individual optimization problem, which we have

Authorized licensed use limited to: BIBLIOTECA DE LA UNIVERSIDAD DE CANTABRIA. Downloaded on March 11,2021 at 07:05:14 UTC from IEEE Xplore.  Restrictions apply. 



0278-0062 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2021.3064464, IEEE
Transactions on Medical Imaging

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. ?, NO. ?, MARCH 2021 7

Fig. 5. Autoencoder comparison via 3-fold cross-validation. (a) Mean Squared Error (MSE) for all the tested architectures. Transparent dashed curves depict
training errors, while continuous curves correspond to test errors for each fold. The average test error is shown as a thicker, non-transparent line for each
network. Architecture E (MMD-SCVAE with fully connected connections at encoder and decoder, Gradually Upscaling Network and auxiliary fully connected
feature maps) achieves the lowest average test MSE in the least amount of iterations. (b) This can also observed by evaluating the distance to a perfect test
SSIM (1.0), where architectures E and F show up to an order-of-magnitude improvement in self-similarity when compared to controls. (c) However, most
architectures still return blurred reconstructed patches, which can be quantified by the average variance of the Laplacian across channels. By using an auxiliary
GAN Discriminator (Architecture F), high frequency components can be better recovered, which translates in a variance histogram that better follows the
true distribution. Reconstructions returned by each of the proposed architectures can be qualitatively observed in (d)–(i) and compared with the true data (j).
Reflectance values are shown in the range [0.0, 0.04] at spatial frequency fx = 0.61 mm−1 and wavelength λ = 500 nm.

observed results in slower convergence time at the expense of
controlling reconstruction errors as a function of bottleneck
size. Nonetheless, obtaining an adjustable bottleneck was
fundamental in understanding the role of texture, as explained
in Section III-C.

III. RESULTS AND DISCUSSION

A total of five experiments were carried out. The training
regimes of each individual network are given in Table III, and
do not change unless stated otherwise. The exact dimensions
of the networks and layers are provided in Section S.I.C of
the Supplementary Material.

A. Designing the primary autoencoder

The final primary autoencoder is the result of a series of
design choices that are specified in Sections II.C and II.E,
as well as Sections B and C in the Supplementary Material.
Such decisions result in improved reconstruction errors and
textural fidelity, which are crucial for the task at hand. For
comparison, Fig. 5 shows a series of networks that gradually
introduce each of the fundamental modifications that enable
successful dataset replication. Six networks in total were tested
under 3-fold sample-wise cross-validation (CV). The first four,
namely (A) a Standard convolutional VAE, (B) the former
VAE but including skip connections, (C) an MMD-VAE, and
(D) the previous VAE with skip connections, utilize global
averaging to connect the convolutional feature maps to the
MLP sections. The last two are our contributions, i.e. (E)
an MMD-VAE with skip connections and fully-connected
layers connecting convolutional layers with MLP layers, and
(F) the same network, with an auxiliary discriminator (G).
All the networks are provided in the repository. Given a

constant number of iterations, the final model is the best
of all possible options in terms of test MSE (Fig. 5.(a)),
test Structural Self-Similarity (SSIM) (violin plots of Fig.
5.(b)) and average variance of the Laplacian across channels,
as shown in Fig. 5.(c). Architectures (F) and (G), which
include the intermediate fully-connected layers achieve faster
convergence and lower MSE/SSIM, while (G) best fits the
Laplacian variance histogram. The latter metric demonstrates
that (G) preserves high-frequency information, observed after
applying the Laplacian operator across the x and y dimensions
of the patch, has the same distribution as the real data.

These quantitative results can be qualitatively observed in
the reconstructions provided by each individual network in
Fig. 5(d)–(i), by comparing them to the target images (Fig.
5(j)). While these networks work well in benchmarked datasets
such as MNIST and CIFAR-10 (see provided code), modeling
texture in SFDI data proves to be a much more delicate and
ill-posed problem, which is challenging to most architectures.
Two relevant concepts must be noted here. First, that wall
clock time differs between architectures, e.g. ∼3 hours for
VAE (A) vs. ∼24 hours for (G). However, all architectures
saturate at MSE/SSIM scores orders of magnitude above (F)
and (G), and all except (G) fail to replicate the variance-of-
the-Laplacian histogram of the patch dataset. Secondly, it is
important to note that bottleneck clamping is not implemented
in networks (A) through (E), which means that convergence
for the last two networks would be faster if they were allowed
to train with 256-long words for all minibatch steps.

B. 2D representations

Low-dimensional, unsupervised representations of the 256-
dimensional keywords, when combined with adequate valida-
tion tests, can provide significant insight with regards to how
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Fig. 6. Initial dataset considerations provided by the neural framework. Top row shows (a) the 31 × 31-pixel patch dataset projected into 2D, color-coded
by tissue supercategory, (b) the same plot but color-coded by sample number of origin, (c) classifier accuracies observed during training for 1000 random
samples of the training and test sets in 5-fold cross-validation and ROI halving experiments. Finally, the confusion matrices in (d) and (e) provide the best test
(in bold) and training (between parentheses) accuracies per category, for 5-fold cross-validation and ROI halving, respectively. Bottom row –plots (f) through
(j)– provides analogous results for pixel-wise analysis. In this dataset, inter-sample variability dominates intra-sample variability by a significant margin, to
the point that spectra can be nearly perfectly identified if the training set includes information from its specimen of origin.

well each pathology is uniquely identifiable. Fig. 6 presents
the same experiment, performed separately for 31 × 31-pixel
patches (shown in the top row) and individual spectra (bottom
row). In Figs. 6.(a) and (f), the 2D projection of the 256-
dimensional feature-space keywords is shown, color-coded
by tissue category. The point cloud corresponds to 80% of
the dataset, while 20% was left aside for validation control.
Identical scatter plots are given in (b) and (g), but are instead
color-coded by the specimen number of origin. Generally,
there appears to be a gradual change in imaging conditions.
Such differences may be consequence of improvements in
the acquisition protocol, given the experimental nature of the
imaging device and dataset, and considering the fact that this
separation becomes negligible for later samples.

Some conclusions can be drawn from these maps. First, that
there is significant overlap between connective tissue, malig-
nant tumors and fibrocystic disease, even with texture analysis,
suggesting that there are spectral and/or textural properties
shared among these categories. This is consistent with recent
work in multiphoton histology, where collagen fibers have
been observed providing structure to malignant tumors [36].
Macroscopically, this would present as a spectral superposition
of structural (scattering) and chemical (absorption) properties,
which inevitably hinder classification. Secondly, adipose tissue
and benign lesions show significant unsupervised separability
in both simulations, with reduced inter-sample variability in
the 2D maps, implying that these particular categories consis-
tently respond with a specific spatial frequency and spectral
signature that can be identified by unsupervised means.

These unsupervised, qualitative results can be contrasted
with what is returned by the classification branch of the
framework. During training, a large generalization gap was
reported in 5-fold CV for both pixel-wise and patch-wise

analysis, as can be observed in Fig. 6.(c) and (h). In fact,
both models overfit past the first ten thousand iterations for
5-fold CV. The best possible results for 5-fold CV (at 7× 103

and 10×103 training iterations for patches and pixels, respec-
tively) are left in Fig. 6.(d) and (i), showing severe accuracy
deficiencies. While patch-wise analysis improves malignancy
detection accuracy by about 15% (which could be observed
succinctly by how point clouds for malignant subtypes are
slightly more separated from connective and fibrocystic tissue
in Fig. 6.(a)), these cross-validation results agree with the
best global classification accuracy reported with this dataset,
i.e. 75-80%, on previous work that evaluated leave-one-out
cross-validation on an ensemble of patch analysis networks
[41]. In contrast, using half of each ROI for training and the
other half for testing shows that overfitting never truly occurs
–albeit the model shows an evident, reduced generalization
gap– implying that if inter-sample variability is eliminated
from the problem, classification becomes trivial. Such results
allow us to conclude that the presence of connective tissue in
breast cancer, and the fact that Fibrocystic Disease presents in
most cases as a combination of benign growths and connective
tissue [52] both constitute the main sources of errors in a
vanilla classification environment, indicating that a successful
algorithm will require the inclusion of local, case-specific
information to reliably assess tumor margin status.

C. The role of texture in classification accuracy

The previous study is demonstrably insufficient to prove that
texture truly contributes in pathology identification as, perhaps,
mere redundancy could be the cause of accuracy improvements
observed in Fig. 6.(e). Proper empirical proof can be obtained
with an ablation test on a primary AE trained with bottleneck
clamping, which allows for plotting graphs analogous to those
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used in PCA/SVD-based dimensionality reduction, where re-
construction accuracy (or explained variance) can be plotted
with respect to latent space size. The experiment required
inter-sample variability to be omitted and, thus, ROI halving
validation was performed: the top half of each ROI was used
for training, and the bottom half was used for testing, and
viceversa, resulting in two validation folds that only reflect
intra-sample variability.

Results are provided in Fig. 7. In this simulation, the size
of the bottleneck was iteratively increased from nz = 1
to nz = 256, and a classifier was trained for keywords of
length nz . This was feasible in practice thanks to clamping the
bottleneck during training, and therefore a single VAE needed
to be trained, following Table III.(2). The nz-th classifier is
trained with the first nz coordinates from this autoencoder.
Reconstructions with only these coordinates can be obtained
as in Fig. 4.(b), by setting the remaining coordinates to zero.
The proposed framework, in its current configuration, allows
us to observe the effect of bottleneck size in two different
domains simultaneously, namely the classification domain
(Fig. 7.(a)) and the measurements domain (Fig. 7.(b) and (c)).
First, classifier accuracy for each of the tissue supercategories
is left in Fig. 7.(a). Fig. 7.(b) presents the MSE for the
complete dataset as a function of bottleneck size, as well as
the MSE between the average spectrum of each patch and
the average spectrum of its reconstruction at the primary AE
output. Fig. 7.(a) shows a set of patches reconstructed with
nz-long keywords (nz = 1, . . . , 50) at fx = 0.15 mm−1 and
λ = 550 nm.

Interestingly, the first crucial observation is that the aver-
age spectral properties of individual patches (in both spatial
frequency and wavelength) stabilize at about nz = 20,
while patch reconstruction errors consistently improve with
nz . In the patch domain –Fig. 7.(c)–, reconstructions from
nz = 1 to nz = 20 qualitatively corroborate that low-
frequency spatial information (i.e. the presence of darker or
lighter corners, or the presence of millimeter-sized objects)
is gradually included as nz is increased. These phenomena
would correspond to changes in illumination, tumor bound-
aries, or folds resulting from positioning the sample, which
typically would be observed in the first Principal Components
or Singular Vectors. Further information, which does not
improve the average spectral properties as significantly, are
introduced circa nz = 20. These components correspond to
higher frequency spatial information, i.e. finer details and
texture, and as seen in Fig. 7.(c). It is during this transition,
at nz = 10, ..., 40, where the introduction of finer details
coincides with an improvement in classification performance
for Fibrocystic Disease and Connective tissue, from ∼ 70%
to ∼ 85% accuracy. In other words, performance improves
as local structural variations surrounding a pixel is intro-
duced and/or learned, to the point of allowing for individual
identification, supporting parallel work that showed similar
results on single-frequency, single-wavelength patch analysis
[40]. It is important to note, however, that malignant tissue
subtypes reach peak accuracy before higher-frequency texture
is encoded in the keywords, suggesting the possibility of
patient-specific spectral information that could be used in a
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Fig. 7. An ablation test can evaluate the effect of bottleneck size on
classification accuracy and reconstruction quality. Experiment results obtained
via ROI halving. Subplot (a) shows per-category classification accuracy for
training and test sets for both halves, while (b) evaluates the patch-wise MSE
and average spectral MSE between original and reconstructed patches. Finally,
(c) shows reconstructions for different bottleneck sizes. Bottleneck clamping
allows the use of a single autoencoder for this experiment. The rest of the
coordinates are set to zero and the reconstruction is extracted at its output. A
high-resolution version of (c) is provided in the Supplementary Material.

case-by-case basis for margin delineation.

D. Sample generation

Prior to quantification, it is interesting to consider the
qualitative properties of the generated patches in the mul-
tiple available observation domains. Fig. 8 shows real and
synthesized patches for the five individual super-categories of
interest. Data was obtained from an LS-GAN stack trained
with 80% of the patch dataset (with 20% left for validation).
The outputs of the LS-GAN stack are then provided to the
primary bottleneck, where the primary decoder transforms
the feature keywords into 31 × 31-pixel patches. The plots
show RGB reconstructions of individual patches, where each
column represents a single patch at the four available spatial
frequencies. CIE 1931 Color Matching Functions with a D-65
illuminant were used for the reconstructions [53]. The same
points can also be observed in 2D space, in Figs. 8.(a’) through
.(e’). These scatter plots show the original training data in
bright colors, and the synthesized data in a darker shade of
the same color, for each of the individual pathologies. The
complete 2D map is provided as a faint gray scatterplot, so
that each figure can be consistently compared with Fig. 6.(a).

Many of the conclusions extracted via supervised methods
can be repeated here. The 2D maps allow us to verify that
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Fig. 8. Generating patches at various frequencies with the LS-GAN stack. The following are outputs of the primary autoencoder to synthesized 256-dimensional
feature keywords. This experiment uses the complete dataset (80% for training, 20% for validation). Plots (a) through (d) show spectra-to-RGB reconstructions
of real and generated patches, where each column displays a patch at the four different spatial frequencies (0.0, 0.15, 0.61, and 1.37 mm−1). Subplots
(a’) through (e’) show 5000 artificially generated samples for each supercategory projected onto the 2D space of the secondary bottleneck (shown in Fig.
6.(a)). In these scatter plots, light colored points represent reference training data, and darker points correspond to the synthesized data. These 2D projections
qualitatively ensure correct sample generation without significant mode collapse. Best viewed in color.

each of the individual LS-GANs with multiple discriminators
do not exhibit significant mode collapse, as all the different
training set point clouds superimpose adequately with the
original training data. Adipose and benign cysts present a
very specific spectral signature, which is separable from each
other and the rest of the categories. Once again, the presence
of elastin and collagen in malignant subtypes and fibrocystic
disease can be observed from a different perspective, as the
three categories share a region in 2D space near the coordi-
nate origin where connective tissue –Fig. 8.(b’)–is the most
dominant subtype. Moreover, the presence (or lack thereof)
of multiple modes or point clouds separated by specimen
number in some pathologies suggests that certain signatures
(e.g. adipose tissue and benign cysts showing few or no modes)
are easily generalizable to all specimens, whereas others (FCD
and malignant tumors) are not, again suggesting that the use
of prior information would be beneficial in margin delineation
with deep classifiers.

It is also important to note that some of the categories
exhibit the presence of surgical ink, i.e. Fig. 8.(b), revealing
that connective tissue is often marked with blue ink which,
considering that all slides are intermediate cuts, implies some
degree of perfusion of surgical ink, which may be obstructing
proper classification. All in all, unsupervised qualitative anal-
ysis allows the observer to extract conclusions that can then
be contrasted with canonical classification experiments, as in
Fig. 6.(d), (e), (i), and (j).

E. Optical properties and inter-sample variability

In the following quantitative analysis, pixel optical prop-
erties are compared between real and generated data. The
80 : 20 dataset split for training/validation was used, since
using ROI halving and/or 5-fold cross-validation will only
show the variations in OPs between folds and/or halves, and
we wish to compare how well the GAN stack can replicate
and synthesize the variability observed in the complete dataset.
Importantly, the OP estimator never observes actual data, and

thus we only wish to analyze how well the trained GANs
generate data with accurate optical properties, and how well
the OP estimator fits the semi-empirical function to the data.

Two figures were devised. Fig. 9 studies how well OP
estimation can reconstruct the original data, by evaluating
the coefficient of determination between the input data and
the estimated reflectance, which is a result of fitting Rd(fx)
(Equation 1) with the optical properties estimated by the
neural network, (µ̂′s, µ̂a, γ̂). Fig. 10 indirectly compares real
and synthesized data by analyzing similarities in its optical
properties, given the justified assumption that the OP estimator
is sufficiently accurate. Results in Fig. 9 show that this
assumption is valid, for both real –Fig. 9.(a)– and generated
data –Fig. 9.(b)– but that model precision changes with respect
to wavelength. Particularly, the first wavelengths show average
standard errors within 15%, typical of LUT and least-squares
fitting of Rd [32], [33], while the 700-800 nm region stays
under 6–7%. This is due to two main reasons. Firstly, at 490
and 550 nm absorption due to hemoglobin is significant, thus
violating the fundamental condition for the diffuse approxi-
mation of the RTE to hold (µ′s � µa). Secondly, light source
instabilities and changes in illumination conditions due to the
various shapes and sizes of the tumors reveal inconsistencies
at higher frequencies. This is expected; note that the plot
is in logarithmic scale, and we refer to variations for low
reflectances (1% – 5%), where low SNR and changes in
illumination with respect to a flat reference phantom will cause
random fluctuations that may compromise monotonicity and
consistent decay in the measurements, resulting in incorrect
fitting of the theoretical model.

As a final demonstration, Fig. 10 presents the average
optical properties per tissue category, as a proxy for an-
alyzing the differences between real and synthesized data.
Each row represents a different parameter, namely (1) reduced
scattering coefficient µ′s, (2) absorption coefficient µa, and
phase function parameter γ, with respect to wavelength. The
network extracts OPs at each wavelength individually, by
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Fig. 9. Optical properties estimation with a neural network LUT. Actual vs.
predicted reflectance Rd(fx) on the real dataset (left column) and synthetic
data (right column). Average standard errors for the dataset are within 5%
– 15%, as is typical in SFDI-based OP extraction. Rows show the actual
and predicted reflectances for individual wavelengths. Each plot includes
coefficients of determination and standard errors for the complete dataset (in
red) and the dataset averages (in black).

processing the pixels at the center of each patch in both the
real dataset (column A) and the synthesized dataset (column
B). These two first columns are crucial in understanding
the relevance of local information, as opposed to finding a
global spectral/spatial signature for cancer. As observed by the
unsupervised AEs, some tissue types present a differentiating
feature (i.e. adipose tissue presents with a higher γ than other
categories, and benign tumors present little absorption) but,
in general, tissue optical properties are superimposed in the
VisNIR regime. Further insight is revealed after analyzing
the statistics between real and generated optical properties,
which are shown in columns (C) through (G). In each plot,
the complete category r-score is calculated, and shown in
red. Its corresponding slope and intercept is plotted in red
as well. Additionally, the category-average optical properties
are analyzed and presented. The disparity between the average
category r-score and the complete r-score is significant, but
is explained by the fact that each category is multi-modal, i.e.
not only one type of spectra is observed.

The presence of latent space clusters for a given tissue
category has been discussed in Section III-D; its causes may
include inter-sample variability, the presence of perfusing
surgical ink, and minor acquisition inconsistencies, among
others. For illustrative purposes, 500 randomly selected real-

synthesized pairs of OPs (in transparent grey) are shown
in Fig. 10, columns (C) through (G). These plots show
symmetries along the y = x axis, revealing separate clusters
in scattering and absorption for all categories. Such a result
allows us to prove that no modes have collapsed during GAN
training; otherwise, the gray plots would not be symmetrical.

IV. SUMMARY

This work makes use of a neural network-based framework
to study the effects of pathology on tissue optical properties
in breast cancer. Developing a complete framework with
supervised and unsupervised elements has been shown to be
useful in previous work –particularly, melanoma detection–
with conventional statistical tools and linear dimensionality
reduction [54]. However, in many problems –as is the case in
this contribution– data is rarely well conditioned and exhibits
non-linear behavior, and thus a successful implementation of a
similar framework requires the development of ad hoc neural
architectures and methods that leverage the power of deep
learning models to compensate for these problems, which
cannot be resolved with conventional approaches to HSI/SFDI
imaging. In the case of SFDI images of breast cancer lumpec-
tomies, three fundamental developments were necessary prior
to this work: (1) designing and training an autoencoder that
could encode the ill-conditioned, subtle textural properties of
tissues under modulated light, (2) finding a generator stage
that could synthesize data with evident inter-sample variability
without significant mode collapse, and (3) defining a neural
LUT for real-time optical properties estimation that would
include both diffuse and sub-diffuse reflectance data.

Interconnecting these models, once functionality is guaran-
teed, results in a variety of conclusions, which are indicative
of the specific properties required to design a functional mar-
gin delineation system in practice. By employing bottleneck
clamping, it is possible to observe that average spectral prop-
erties can be explained with few dimensions, and that texture
presents as low-variance, high-dimensional fluctuations that
are embedded within spectral information. Furthermore, it can
be concluded that pixel-wise optical properties are sufficient
for identifying malignant tissue, but that the inclusion of local
textural information helps to uniquely identify categories with
prominent textural features, such as Fibrocystic Disease and
connective tissue, as long as inter-patient variability is com-
pensated, supporting work that analyzes textural information
exclusively [40]. Moreover, the dataset shows a detectable
superposition between connective tissue and malignant tissue
subtypes in feature space, suggesting that the presence of
collagen and elastin in malignant growths, recently observed
in multiphoton microscopy [36], could perhaps be measured
macroscopically; further research is needed to ascertain if such
presence of connective tissue could be quantified.

Classifying over the primary AE’s extracted features and
following classical validation methods demonstrates the fun-
damental effects of inter-sample variability, as opposed to
local variability. While textural methods are able to improve
malignancy detection accuracy by up to 15% upon pixel-
wise analysis, the similarities in the confusion matrices of
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Fig. 10. Quality assessment of synthesized spectra can be done indirectly, by analyzing optical properties. Rows (1), (2) and (3) show results pertaining
to reduced scattering coefficient µ′s, absorption coefficient µa, and phase function parameter γ, respectively. Columns (A) and (B) show the median optical
properties per tissue category as error-bar plots, where whiskers represent one standard deviation, of real and synthesized spectra, respectively. Columns (C)
through (G) randomly compare optical properties of real data with synthesized equivalents for each of the main tissue supercategories. In this grid, each subplot
contains 500 pairs of optical properties from real and synthesized spectra in grey, the identity line y = x –plotted in blue–, and two linear regression tests.
The red line and stats (namely, coefficient of determination and standard error) are the result of applying linear regression on the raw data, while the black
line, errorbars and corresponding statistics correspond to analyzing average optical properties. The former provides little information due to the multimodal
characteristics of the dataset; however, the latter demonstrates that, on average, the optical properties of the real and synthesized datasets match.

Fig. 6 certainly suggests that a proper margin delineation
tool must work locally. Solutions to this problem such as the
use of one-shot deep learning, the inclusion of patient biopsy
information, and/or problem constraining methods that define
comparing metrics instead of absolute ones, will be researched
and studied, as they seem to be the most viable option to
achieving real-time assessment of tumor margins.

A functional primary AE also allows for high-fidelity
sample generation with Generative Adversarial Networks, as
most of the compression effort is achieved a priori, and can
therefore be leveraged and reused with smaller generative
networks. The alternative would be to train multiple, larger
conditional GANs, or conditional VAE-GANs with more pa-
rameters and modules that ensure true conditional generation
with no mode collapse, with their corresponding additional
compute and time requirements. The proposed solution allows
its user to produce complete datasets for multiple categories
with millions of samples closely resembling the spectral
and textural properties of actual patient data. By reusing
the primary autoencoder features, classes and partitions of
such classes could be prepared in hours’ time with relatively
constrained computational resources. Furthermore, synthesized
data –or the models themselves— do not need to adhere to the
same ethical constraints as private patient information, and
could be potentially open-sourced, as long as adequate ethical
provisions are guaranteed.

The ability to observe incoming data under different scopes
simultaneously could, in fact, be already useful in a clinical
setting. As an example, consider the plots in Figs. 11 and
12. These individual specimen summaries show five potential
ways to observe a lumpectomy specimen with this architecture,
namely with reflectance data –(a) and (b)–, unsupervised
features –plots (c) and (d)–, supervised and feature-based
segmentation –(e) and (f)– and direct optical properties –(g),

(h), and (i). Unsupervised feature maps were generated by
transforming the secondary autoencoder’s output into polar
coordinates, and then converting them to HSV and RGB. Fea-
tures and classification maps can be combined and produced
in many ways to enhance contrast in margin assessment.

Future margin delineation methods designed to consider the
lessons learned in this article should certainly focus on opti-
mizing clinical applicability. Protocols for SFDI-based margin
assessment could easily be integrated into already existing
2D/3D X-ray imaging in BCS, resulting in a multimodal
approach to margin delineation. We consider that this can be
achievable if four issues are addressed, namely that (a) the
imaging device is capable of acquiring the necessary data in
a clinically negligible time frame (e.g. 10-15 minutes or less);
(b) that the margin assessment algorithm can respond in a frac-
tion of the time spent acquiring–which can be achieved with
sufficient compute power, in situ or within hospital premises–
; (c) that the algorithm provides some metric of certainty or
accountability on the generated diagnosis, and (d) that the
surgeon can interact with the diagnostic maps and provide
references to compensate for inter-sample variability. The first
two conditions are fundamental to their implementation in a
practical surgical workflow, while the latter are essential to
ensure that the algorithm can be trusted, while keeping the
human in the loop in charge.

V. SUPPLEMENTARY MATERIAL

An additional Supplementary Material file includes informa-
tion regarding neural network sizes, loss functions, activation
functions, and other technical decisions, as well as illustrative
examples of the various architectures used throughout this
manuscript.
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Fig. 11. Summary for Sample 23 during 5-fold cross-validation (High Grade IDC embedded in connective tissue). Subplot (a) shows ROIs and average
reflectance; (b) presents 10% of the reflectance data within those ROIs, at all four wavelengths. Processing the data with the primary and secondary autoencoder
produces a map with two values per pixel, which was translated to HSV values to create a false color image (c). The corresponding colors for the false color
map are shown with the test spectra from (b) –as well as training data for the categories of interest– in subplot (d). The classifier uses the 256-D pixels
from the primary AE to produce a diagnostic map (e). Classification boundaries can also be projected onto 2D (f), by color-coding z-space with the classifier
(z′ → ẑ → ŷ). Finally, optical property maps can be plotted, namely reduced scattering µ′s (g) and phase function parameter γ (h). Local differences in OPs
can be observed and plotted as usual (i). The complete training set in z-space for this fold is left, for reference, in (j).

Fig. 12. Summary for Sample 16 during 5-fold cross-validation (High Grade IDC in adipose tissue). Subplot (a) shows ROIs and average reflectance; (b)
presents 10% of the reflectance data within those ROIs, at all four wavelengths. Processing the data with the primary and secondary autoencoder produces
a map with two values per pixel, which was translated to HSV values to create a false color image (c). The corresponding colors for the false color map
are shown with the test spectra from (b) –as well as training data for the categories of interest– in subplot (d). The classifier uses the 256-D pixels from
the primary AE to produce a diagnostic map (e). Classification boundaries can also be projected onto 2D (f), by color-coding z-space with the classifier
(z′ → ẑ → ŷ). Finally, optical property maps can be plotted, namely reduced scattering µ′s (g) and phase function parameter γ (h). Local differences in OPs
can be observed and plotted as usual (i). The complete training set in z-space for this fold is left, for reference, in (j).

VI. CODE REPOSITORY

A complete repository with the full network pipeline ap-
plied on the MNIST and CIFAR-10 datasets, as well as
the reference networks and the forward and inverse models
for optical properties for diffuse and sub-diffuse frequencies,
will be made public upon this manuscript’s publication, at
https://github.com/ArturoPardoGIF/genSFDI.
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