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Abstract: Margin assessment in gross pathology is becoming feasible as various explana-
tory deep learning-powered methods are able to obtain models for macroscopic textural
information, tissue microstructure, and local surface optical properties. Unfortunately, each
different method seems to lack enough diagnostic power to perform an adequate classification
on its own. This work proposes using several separately trained deep convolutional networks,
and averaging their responses, in order to achieve a better margin assessment. Qualitative
leave-one-out cross-validation results are discussed for a cohort of 70 samples.

OCIS codes: 100.0100, 200.4260, 170.3880, 170.3010, 110.0113, 200.4700, 200.

1. Introduction

As of 2019, breast-conserving surgery (BCS) followed by radiotherapy remains as one of the preferred procedures for
breast cancer treatment, while still exhibiting re-excision rates of about 22%–30% [1]. This may be due, among other
factors, to the lack of automated methods that can assess lumpectomy margins in real time with sufficient accuracy. As
a consequence, for example, surgery outcomes for BCS have been shown to be dependent on surgeon case volume or
hospital specialization [2]. Spatially-modulated backscattered reflectance provides different responses for the various
types of tissues that can be found in gross pathology samples of BCS [3] but, as can be seen in the following pages,
there exist a series of caveats that must be overcome in order to use modulated imaging as a viable, robust tool for
margin assessment.

Analyzing and classifying tissue subtypes with SFDI poses an additional challenge. While pixel-wise classification
provides tumor probability maps with higher resolution, it is more sensitive to inter- and intra-sample variability, in
the sense that different tissue classes may respond similarly to light and thus would be easily misclassified, as their
optical signatures describe similar morphological and molecular properties. This is further exacerbated if the number
of acquisitions (i.e. wavelengths and/or spatial frequencies captured per sample) is minimized, which seems to be the
case whenever acquisition speed is a fundamental requirement. On the other hand, patch-wise textural analysis in the
sub-diffuse domain [4] shows a much more defined accuracy, precision and recall, at the expense of losing spatial
resolution. Both methods show strengths and weaknesses that, ideally, should be combined to obtain a model with
robust accuracy and sufficient resolution, which would be essential for surgical margin assessment.

To this end, the following contribution is an attempt at combining these models using state-of-the-art deep learning
models. Convolutional networks are flexible systems that aim to provide the best possible classification for a given
dataset. In practice, the input of a deep neural net may vary in size, while keeping the classification objective constant.
This allows us to produce an ensemble of classifiers. Each of the models observes a given specimen at a different
spatial scale, providing maps of varied spatial resolutions and (expectedly) dissimilar accuracies. In this work, we
use an ensemble of modified convolutional DenseNets [5], and study the performance of each separate model versus
the complete ensemble. Two ensemble learning models are employed: (a) ensemble averaging and (b) stacking with a
meta-network. Performance is evaluated via leave-one-out cross-validation on a cohort of n= 70 lumpectomy samples,
using the best possible accuracy for each specimen separately.
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2. Materials and methods

Imaging system and image acquisition The SFDI instrument is a Perkin-Elmer IVIS SpectrumCT system with a
retrofitted Spatial Frequency Domain Imaging (SFDI) device [6]. The FOV is about 10×10 cm. Lumpectomy samples
are cut into slices of 5 mm in thickness, following a specific clear-cut protocol [4]. One of the cuts is chosen for imag-
ing; such cut is placed between two optically transparent acrylic plates, held together by elastic bands. Each specimen
is imaged at four spatial frequencies (0.0, 0.1488, 0.6053, 1.3736 mm−1) and four wavelengths (490.0, 550.0, 600.0,
and 700.0 nm). The sample is then studied by a board-certified breast pathologist via standard H&E staining, provid-
ing a high-resolution ground truth diagnostic map. Conservative Regions of Interest (ROIs) are manually generated for
the SFDI images, by visually cross-referencing the ground truth H&E stain images with the modulated imaging data.
These manually-crafted ROIs only cover areas where only one particular tissue type is present. A complete summary
of all tissue categories, samples and ROIs is left in Table 1. Examples for the original ROIs are shown in the Results
section.

Table 1. Number of samples with ROIs of each different tissue types.

Tissue subtype Samples with tissue subtype n
Adipose Tissue 2, 3, 4, 5, 8, 9, 11, 12, 14, 15, 18, 22, 24, 28, 30, 34, 37, 39, 40, 41, 42,

44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 63, 64, 67, 69, 70.
39

Connective Tissue 6, 8, 12, 13, 22, 23, 33, 35, 40, 43, 47, 48, 49, 50, 51, 53, 55, 58, 60, 63,
64, 65.

22

Myofibroblastic 57 1
Phyllodes 38 1
Normal Treated 20 1
Fibroadenoma 1, 19, 27, 32 4
Fibrocystic Disease 4, 5, 7,9, 11, 32, 36 7
IDC (Low Grade) 12, 18, 28, 40, 47, 50, 52, 54, 61, 65, 68 11
IDC (Intermediate Grade) 6, 8, 13, 29, 30, 33, 35, 36, 37, 41, 42, 53, 58, 63, 66, 67, 70 17
IDC (High Grade) 5, 15, 23, 25, 26, 39, 46, 56, 59, 64 10
ILC 2, 4, 21, 22, 24, 45, 48, 49, 51, 55 10
DCIS 3, 17, 31, 34, 37, 44, 62 7
Mucinous 10, 14, 43, 60 4
Tubular 11, 69 2
Metaplastic 15 1

Total 68 samples 137 ROIs

Initial considerations and category superclasses Two minor issues must be dealt with before approaching the
classification problem. First, and foremost, the reduced number of samples (n = 70) forces us to only study local tissue
properties. This is easily overcome by producing a patch dataset, as described in the next paragraph. Additionally, the
fact that ROIs are conservative (i.e. the binary masks do not encompass the entirety of each sample) makes using
models such as the U- and W-Nets inviable, since those would require complete ROIs, labeling all pixels in the image.
Second, there are considerable differences in terms of the number of samples per tissue subtype; rarer categories are
only represented by a single specimen, while more frequent types are represented by ten or more. Considering that this
approach is an initial study of the influence of spatial scale in SFDI tissue characterization, we have chosen to produce
a total of five tissue superclasses (shown in Table 2): (1) Adipose, (2) Connective, (3) Benign, (4) Fibrocystic Disease
(FD), and (5) Malignant. Adipose, FD and Connective tissue were the only tissue subtypes that are represented as a
separate category for this study. Particularly, FD usually presents as stromal fibrosis (i.e. formations and/or bundles of
connective tissue cells) and benign cyst formation [7], and thus cannot be considered as belonging to either the Benign
or Connective subtypes. Further work may (and should) study more specific categories, and can support itself on these
models (i.e. stacked classification).

Patch dataset generation Model training was possible via dataset augmentation. A balanced dataset of 40000 31×
31 patches was generated via random population subsampling. Patches were successively extracted from random
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Table 2. Tissue superclass and total number of ROIs.

Tissue group Tissue subtypes n
Adipose Adipose 38
Connective Connective Tissue 22
Benign Fibroadenoma, Myofibroblastic,

Benign Phyllodes
6

Fibrocystic Disease Fibrocystic Disease 7
Malignant IDC (Low Grade), IDC (Interm.

Grade), IDC (High Grade), ILC,
DCIS, Mucinous, Tubular, Meta-
plastic

62

Total 68 samples 135 ROIs

samples, at random locations, within existing Regions of Interest. The only requirement for this random subsampling
protocol is that each tissue superclass must have the same number of patches, thus avoiding over-representation of
more frequent classes. This results in a balanced dataset that makes each classifier consider every tissue superclass as
equally relevant. About 600 patches are extracted per sample.
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Fig. 1. Shape of the all-convolutional DenseNet classifier structure: lateral view. 3D tensors are
represented sideways, as in U-Net and W-Net descriptions. This is a form of skip-connection deep
neural network, where each convolutional layer can observe the activations of all previous layers.
Fully connected layers prior to the output layer are all connected to the output, as well as to all
previous fully connected layers.

Compute infrastructure and timing Two computers are used to train separate leave-one-out cross-validation sim-
ulations: (1) an Intel Core 13-7100 CPU, with 32 GB of RAM and a dedicated SSD swap space of 100 GB, and an
nVidia RTX 2080Ti GPU; (2) an AMD Ryzen 5 3600, 32 GB of RAM, 100 GB dedicated SSD swap space, and an
nVidia RTX 2080 Super GPU. Each model reaches its optimal validation value after 20-30 minutes of training.
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Individual networks The selected neural network for all scales was an all-convolutional modified DenseNet [5].
For this first approach, and with the specified hardware limitations, we have selected a network size and dimensions
that can train in less than 30 minutes on an nVidia RTX 2080 Super, obtaining a typical VRAM consumption of 3GB
and GPU utilization circa 75-80% maximum. An example schematic and table for this neural architecture is shown in
Figure 1. The complete tabular description for the actual network is provided in Table 3. All hidden layers are ELUs
to avoid issues related to ReLU death and gradient vanishing [8]. Output classification layers are sigmoidal to allow
for more than one potential diagnosis.

Table 3. Individual classifier structures. As an illustrative reference, the first network is the one de-
picted in Figure 1. The actual network used is the one in the second column. Each layer includes the
dimensions of its respective input and output tensors. npatch indicates patch width (= 3,5,11,21,31)
and ncat = 5 is the number of output categories.

Example from Fig. 1 Tensor shapes (I/O) Network used Tensor shapes (I/O)

15×15×14 Input (?×15×15×14) in npatch ×npatch ×16 Input (?×npatch ×npatch ×16) in

1×20 ELU, f.s. 3×3 (?×15×15×14) in
(?×15×15×24) out

1×50 ELU, f.s. 3×3 (?×npatch ×npatch ×16) in
(?×npatch ×npatch ×66) out

1×20 ELU, f.s. 3×3, stride = 2 (?×15×15×24) in
(?×7×7×54) out

1×50 ELU, f.s. 3×3 (?×npatch ×npatch ×66) in
(?×npatch ×npatch ×116) out

1×20 ELU, f.s. 3×3 (?×7×7×54) in
(?×7×7×74) out

1×50 ELU, f.s. 3×3, stride = 2 (?×npatch ×npatch ×116) in
(?×npatch/2×npatch/2×166) out

1×20 ELU, f.s. 3×3, stride = 2 (?×7×7×74) in
(?×3×3×94) out

1×50 ELU, f.s. 3×3 (?×npatch/2×npatch/2×166) in
(?×npatch/2×npatch/2×216) out

Global avg. (?×3×3×94) in
(?×94) features

1×50 ELU, f.s. 3×3 (?×npatch/2×npatch/2×216) in
(?×npatch/2×npatch/2×266) out

3×256 skip-connection ELU (?×256) per layer 1×50 ELU, f.s. 3×3, stride = 2 (?×npatch/2×npatch/2×266) in
(?×npatch/4×npatch/4×316) out

ncat Sigmoid output (?×ncat) Output 1×50 ELU, f.s. 3×3 (?×npatch/4×npatch/4×316) in
(?×npatch/4×npatch/4×366) out

1×50 ELU, f.s. 3×3 (?×npatch/4×npatch/4×366) in
(?×npatch/4×npatch/4×416) out

1×50 ELU, f.s. 3×3, stride = 2 (?×npatch/4×npatch/4×416) in
(?×npatch/8×npatch/8×466) out

Global avg. (?×npatch/8×npatch/8×466) in
(?×466) features

3×512 skip-connection ELU (?×512) per layer

ncat Sigmoid output (?×ncat) out neurons

Notation: f.s. stands for filter size (per unit). Layer notation is c× n, c := number of concatenated layers, n := number of hidden neurons
in each layer. Finally, stride indicates stride steps, if there are any. Tensor shape notation as in TensorFlow: (batch, height, width,
channels). The token ’?’ denotes an unknown input batch size.

Training schedule Training for each model was allowed for about 60 epochs (120,000 iterations, minibatch size set
to 16). Adam was the optimizer used for training (ε = 1×10−5). Dropout regularization was used to avoid overfitting,
with a drop probability of pdrop = 0.1. For leave-one-out cross-validation, patches belonging to the sample under
test was used as the validation set. The model with the lowest MSE error for the validation set was saved as the
optimal classifier for each specimen. To minimize overhead due to model performance evaluations, train and validation
errors were calculated every 1000 iterations (∼1 epoch). Early stopping was implemented with a patience of 50,000
iterations.

Generating category maps The method for obtaining a diagnostic map with a neural network trained with patches
is sketched out in Figure 2. A given classifier is considered as a function with an input receptive field (m× n) and a
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given diagnostic output ŷ. To produce a complete probability map for a given classifier, each model is swept across
the complete image, producing a diagnostic output at every filter position. All pixels within the receptive field are
diagnosed with the output category. A diagnostic map for a given classifier is obtained by finding the most frequent
diagnosis for each pixel.

Input reticle

Output category

(a) (b) (c)

Fig. 2. Obtaining pathology maps with patch classifiers. The patch classifier is treated as a filter (a)
that transforms data into diagnostic information. To obtain a complete diagnostic image, the filter
is swept across a given sample of interest (b). The final diagnostic map is obtained by weighing all
contributions and finding the most agreed upon output category at each pixel (c).

Background segmentation A separate network is used to perform background segmentation. The same learning
protocol and dataset management rules are applied here but, considering background segmentation as an issue with
little to no clinical relevance, we do not perform leave-one-out and simply let the network learn with the complete
patch dataset. To save time, the same network is used for background segmentation in all images. This segmentation
is not used in the performance metrics of Section 3.1.

Methods for ensemble classification Two typical ensemble learning methods are employed to combine each of the
expert systems: (a) ensemble averaging and (b) stacking.

• Ensemble averaging. Each of the networks provides a diagnostic prediction ŷ1, . . . , ŷn. The average of the pre-
dictions is considered the final diagnostic prediction: ŷ = 1

N (ŷ1, . . . , ŷn). This method should provide an average
sensitivity and specificity to all pathologies and patch sizes, and an increased reliability due to redundancy.

• Stacking. Each network provides a diagnostic prediction ŷ1, . . . , ŷn. An additional neural network, called the
meta-learner or meta-classifier ŷ = g(ŷ1, . . . , ŷn) is used to produce a final diagnostic decision. The objective of
the network will be maximizing the overall accuracy of the result.

3. Results

Two main results are shown in this contribution. First, the five classifier networks are compared against each other, as
well as against the ensemble average and the stacked ensemble model. The practicality of applying ensemble learning
to this specific problem will depend on whether or not its performance shows improvements with respect to using the
networks separately.

3.1. Separate and ensemble accuracy

Figures 3 and 4 show the best possible performances of each of the models, as well as the performance of the average
and stacked ensemble. Note that these calculations are obtained with leave-one-out cross-validation, and thus they
express the most optimistic scenario possible. The global accuracy of each of the models is more or less similar to
already existing results, within 75-80% [3]. Some of the results, however, are particularly noteworthy.
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Fig. 3. Confusion matrix for each of the networks and tissue supercategories. Rows are actual cate-
gories, and columns represent predicted categories. The highest numbers are shown in green.
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Fig. 4. One-vs-others study. Each row represents the Sensitivity, Specificity, and Accuracy for each
of the tissue superclasses against the other four. The bar with the highest score is shown in green.

As can be observed in the confusion matrix of Figure 3, Fibrocystic Disease, which would usually presents as
connective tissue and/or presence of benign growths [7], is the most misdiagnosed category. This (typically benign)
subtype is often misdiagnosed as connective tissue and/or malignant growths, and is only detected half the time by
the 31× 31 network (i.e. the neural network that can best observe textural information within the dataset). The best
individual network for detecting malignancy is the 21×21 network, reaching about 79% global accuracy, mostly due
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Fig. 5. Diagnostic maps for Sample 16. Top row: output (sigmoid layer) probability maps for three
networks, namely those with reticle sizes 3×3, 11×11, and 21×21 each, respectively. Bottom row:
diagnostic maps using ensemble averaging (left) and ensemble stacking (right).

to an improvement in detecting malignant tissues of over 10% with respect to the rest of the ensemble (Figure 3,
bottom right subplot). This may suggest either that the 31×31 network lacks capacity to classify the large patches, or
that a particular textural depth is specifically significant for detecting malignancy.

The two ensemble methods show different results, which can be interpreted in various ways. Expectedly, ensemble
averaging obtains an average performance with respect to each of the individual classifiers. The method (as can be seen
in Figures 5 and 6) provides much better diagnostic resolution than the large-input networks, and on-par specificity for
malignant subtypes, as well as Fibrocystic Disease. Ensemble stacking shows a 15% boost in sensitivity with respect
to averaging, perhaps due to a better exploitation of the performance of the 21×21 network. However, as can be seen
in Figure 4, the stacked ensemble exhibits a much worse specificity for malignant tissue types. This is notably visible
in the qualitative cases: while the ensemble average tends to equalize all the diagnostic maps, the stacked ensemble
output draws a much more drastic boundary between malignant and non-malignant regions.

3.2. Qualitative leave-one-out results

Once the quantitative behavior of the model has been assessed, we show some case results for tumor delineation.
Figures 5 and 6 show the classification results for two particular samples. The top row of plots shows the output
probability maps of the first four classifiers, while the bottom two maps exhibit the behavior of the ensemble average
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Fig. 6. Diagnostic maps for Sample 42. Top row: output (sigmoid layer) probability maps for three
networks, namely those with reticle sizes 3×3, 11×11, and 21×21 each, respectively. Bottom row:
diagnostic maps using ensemble averaging (left) and ensemble stacking (right).

(left) and the stacked ensemble (center). The original Regions of Interest for the two samples are also provided, for
reference, in Figure 7.

In these output maps, many of the notions described in the quantification stage can be observed. Stacking tends to
over-simplify pathology maps at the expense of maximizing overall accuracy, increasing its sensitivity to malignant
scatter signatures and producing anomalous artifacts. In Figure 5, the edges of the lumpectomy are not significantly
classified as malignant by any individual network. The meta-classifier, however, responds with a malignant diagnosis
to maximize the accuracy within the malignant ROI. This implies that the ensemble average may be preferable in terms
of textural and spatial resolution as well as fidelity to the responses of the ensemble.

4. Conclusions

This work shows a pre-emptive step in applying multi-scale analysis of SFDI data to tissue characterization and di-
agnosis. As a general rule, large-scale textural analysis results in more reliable diagnostic maps with lower spatial
resolution, while pixel-wise classification provides higher spatial fidelity, at the expense of reducing diagnostic accu-
racy. The suggested architecture provides tumor probability maps that are as balanced as possible in terms of both
spatial resolution and diagnostic performance.

Nevertheless, much more research is needed to fully assess the effectiveness of ensemble learning in real-time mar-
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Fig. 7. Original ROIs for Sample 17 (left) and Sample 42 (right).

gin assessment of breast cancer lumpectomies. For example, some of the leave-one-out simulations failed to converge
to an adequate output, resulting in misdiagnosis. This suggests that performance could significantly improve if a larger
dataset was procured, minimizing the effect of inter-sample variability and obtaining a better model with greater gen-
eralization capabilities. Additionally, further improvement in acquisition technology could allow for the capture of
more spatial frequencies and wavelengths, providing redundancy and perhaps improving model response further.

Future lines of work include: (a) Including pre-biopsy information as causal input data to the classifier, (b) evalu-
ating height maps for spatial frequency calibration (height variations modify the effective projected frequency on the
images), (c) exploring explanatory AI models that can provide some form of diagnostic certainty.
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