24 research outputs found

    Contribución al diseño de lazos de realimentación electrónica para microsistemas electromecánicos (MEMS) resonantes: ruido de fase generado en lazos osciladores por sus realimentaciones

    Full text link
    En 1966, D. B. Leeson publicó el artículo titulado “A simple model of feedback oscillator noise spectrum” en el que, mediante una ecuación obtenida de forma heurística y basada en parámetros conocidos de los osciladores, proponía un modelo para estimar el espectro de potencia que cuantifica el Ruido de Fase de estos osciladores. Este Ruido de Fase pone de manifiesto las fluctuaciones aleatorias que se producen en la fase de la señal de salida de cualquier oscilador de frecuencia f_0. Desde entonces, los adelantos tecnológicos han permitido grandes progresos en cuanto a la medida del Ruido de Fase, llegando a encontrar una estrecha “zona plana”, alrededor de f_0, conocida con el nombre de Ensanchamiento de Línea (EL) que Leeson no llegó a observar y que su modelo empírico no recogía. Paralelamente han ido surgiendo teorías que han tratado de explicar el Ruido de Fase con mayor o menor éxito. En esta Tesis se propone una nueva teoría para explicar el espectro de potencia del Ruido de Fase de un oscilador realimentado y basado en resonador L-C (Inductancia-Capacidad). Al igual que otras teorías, la nuestra también relaciona el Ruido de Fase del oscilador con el ruido térmico del circuito que lo implementa pero, a diferencia de aquellas, nuestra teoría se basa en un Modelo Complejo de ruido eléctrico que considera tanto las Fluctuaciones de energía eléctrica asociadas a la susceptancia capacitiva del resonador como las Disipaciones de energía eléctrica asociadas a su inevitable conductancia G=1⁄R, que dan cuenta del contacto térmico entre el resonador y el entorno térmico que le rodea. En concreto, la nueva teoría que proponemos explica tanto la parte del espectro del Ruido de Fase centrada alrededor de la frecuencia portadora f_0 que hemos llamado EL y su posterior caída proporcional a 〖∆f〗^(-2) al alejarnos de f_0, como la zona plana o pedestal que aparece en el espectro de Ruido de Fase lejos de esa f_0. Además, al saber cuantificar el EL y su origen, podemos explicar con facilidad la aparición de zonas del espectro de Ruido de Fase con caída 〖∆f〗^(-3) cercanas a la portadora y que provienen del denominado “exceso de ruido 1⁄f” de dispositivos de Estado Sólido y del ruido “flicker” de espectro 1⁄f^β (0,8≤β≤1,2) que aparece en dispositivos de vacío como las válvulas termoiónicas. Habiendo mostrado que una parte del Ruido de Fase de osciladores L-C realimentados que hemos denominado Ruido de Fase Térmico, se debe al ruido eléctrico de origen térmico de la electrónica que forma ese oscilador, proponemos en esta Tesis una nueva fuente de Ruido de Fase que hemos llamado Ruido de Fase Técnico, que se añadirá al Térmico y que aparecerá cuando el desfase del lazo a la frecuencia de resonancia f_0 del resonador no sea 0° o múltiplo entero de 360° (Condición Barkhausen de Fase, CBF). En estos casos, la modulación aleatoria de ganancia de lazo que realiza el Control Automático de Amplitud en su lucha contra ruidos que traten de variar la amplitud de la señal oscilante del lazo, producirá a su vez una modulación aleatoria de la frecuencia de tal señal que se observará como más Ruido de Fase añadido al Térmico. Para dar una prueba empírica sobre la existencia de esta nueva fuente de Ruido de Fase, se diseñó y construyó un oscilador en torno a un resonador mecánico “grande” para tener un Ruido de Fase Térmico despreciable a efectos prácticos. En este oscilador se midió su Ruido de Fase Técnico tanto en función del valor del desfase añadido al lazo de realimentación para apartarlo de su CBF, como en función de la perturbación de amplitud inyectada para mostrar sin ambigüedad la aparición de este Ruido de Fase Técnico cuando el lazo tiene este fallo técnico: que no cumple la Condición Barkhausen de Fase a la frecuencia de resonancia f_0 del resonador, por lo que oscila a otra frecuencia. ABSTRACT In 1966, D. B. Leeson published the article titled “A simple model of feedback oscillator noise spectrum” in which, by means of an equation obtained heuristically and based on known parameters of the oscillators, a model was proposed to estimate the power spectrum that quantifies the Phase Noise of these oscillators. This Phase Noise reveals the random fluctuations that are produced in the phase of the output signal from any oscillator of frequencyf_0. Since then, technological advances have allowed significant progress regarding the measurement of Phase Noise. This way, the narrow flat region that has been found around f_(0 ), is known as Line Widening (LW). This region that Leeson could not detect at that time does not appear in his empirical model. After Leeson’s work, different theories have appeared trying to explain the Phase Noise of oscillators. This Thesis proposes a new theory that explains the Phase Noise power spectrum of a feedback oscillator around a resonator L-C (Inductance-Capacity). Like other theories, ours also relates the oscillator Phase Noise to the thermal noise of the feedback circuitry, but departing from them, our theory uses a new, Complex Model for electrical noise that considers both Fluctuations of electrical energy associated with the capacitive susceptance of the resonator and Dissipations of electrical energy associated with its unavoidable conductance G=1/R, which accounts for the thermal contact between the resonator and its surrounding environment (thermal bath). More specifically, the new theory we propose explains both the Phase Noise region of the spectrum centered at the carrier frequency f_0 that we have called LW and shows a region falling as 〖∆f〗^(-2) as we depart from f_0, and the flat zone or pedestal that appears in the Phase Noise spectrum far from f_0. Being able to quantify the LW and its origin, we can easily explain the appearance of Phase Noise spectrum zones with 〖∆f〗^(-3) slope near the carrier that come from the so called “1/f excess noise” in Solid-State devices and “flicker noise” with 1⁄f^β (0,8≤β≤1,2) spectrum that appears in vacuum devices such as thermoionic valves. Having shown that the part of the Phase Noise of L-C oscillators that we have called Thermal Phase Noise is due to the electrical noise of the electronics used in the oscillator, this Thesis can propose a new source of Phase Noise that we have called Technical Phase Noise, which will appear when the loop phase shift to the resonance frequency f_0 is not 0° or an integer multiple of 360° (Barkhausen Phase Condition, BPC). This Phase Noise that will add to the Thermal one, comes from the random modulation of the loop gain carried out by the Amplitude Automatic Control fighting against noises trying to change the amplitude of the oscillating signal in the loop. In this case, the BPC failure gives rise to a random modulation of the frequency of the output signal that will be observed as more Phase Noise added to the Thermal one. To give an empirical proof on the existence of this new source of Phase Noise, an oscillator was designed and constructed around a “big” mechanical resonator whose Thermal Phase Noise is negligible for practical effects. The Technical Phase Noise of this oscillator has been measured with regard to the phase lag added to the feedback loop to separate it from its BPC, and with regard to the amplitude disturbance injected to show without ambiguity the appearance of this Technical Phase Noise that appears when the loop has this technical failure: that it does not fulfill the Barkhausen Phase Condition at f_0, the resonance frequency of the resonator and therefore it is oscillating at a frequency other than f_0

    A Fluctuation-Dissipation Model for Electrical Noise

    Get PDF
    This paper shows that today’s modelling of electrical noise as coming from noisy resistances is a non sense one contradicting their nature as systems bearing an electrical noise. We present a new model for electrical noise that including Johnson and Nyquist work also agrees with the Quantum Mechanical description of noisy systems done by Callen and Welton, where electrical energy fluctuates and is dissipated with time. By the two currents the Admittance function links in frequency domain with their common voltage, this new model shows the connection Cause-Effect that exists between Fluctuation and Dissipation of energy in time domain. In spite of its radical departure from today’s belief on electrical noise in resistors, this Complex model for electrical noise is obtained from Nyquist result by basic concepts of Circuit Theory and Thermo- dynamics that also apply to capacitors and inductors

    Thermodynamical Phase Noise in Oscillators Based on L-C Resonators (Foundations)

    Get PDF
    Using a new Admittance-based model for electrical noise able to handle Fluctuations and Dissipations of electrical energy, we explain the phase noise of oscillators that use feedback around L-C resonators. We show that Fluctuations produce the Line Broadening of their output spectrum around its mean frequency f0 and that the Pedestal of phase noise far from f0 comes from Dissipations modified by the feedback electronics. The charge noise power 4FkT/R C2/s that disturbs the otherwise periodic fluctuation of charge these oscillators aim to sustain in their L-C-R resonator, is what creates their phase noise proportional to Leeson’s noise figure F and to the charge noise power 4kT/R C2/s of their capacitance C that today’s modelling would consider as the current noise density in A2/Hz of their resistance R. Linked with this (A2/Hz?C2/s) equivalence, R becomes a random series in time of discrete chances to Dissipate energy in Thermal Equilibrium (TE) giving a similar series of discrete Conversions of electrical energy into heat when the resonator is out of TE due to the Signal power it handles. Therefore, phase noise reflects the way oscillators sense thermal exchanges of energy with their environmen

    Electrical detection of the mechanical resonances in AlN-actuated microbridges for mass sensing applications

    Get PDF
    We report the fabrication and frequency characterization of mechanical resonators piezoelectrically actuated with aluminum nitride films. The resonators consist of a freestanding unimorph structure made up of a metal/AlN/metal piezoelectric stack and a Si3N4 supporting layer. We show that the electrical impedance of the one-port device can be used to assess the vibrational behavior of the resonators, provided that the modes do not exhibit specific symmetries, for which the impedance variations cancel. Frequency shifts arise when loading the resonators with small masses. As gravimetric sensors, the microbridges exhibit mass sensitivities of 0.18 fg/Hz for vibrational modes around 2 MHz

    Evidence for the intrinsically nonlinear nature of receptive fields in vision

    Get PDF
    The responses of visual neurons, as well as visual perception phenomena in general, are highly nonlinear functions of the visual input, while most vision models are grounded on the notion of a linear receptive field (RF). The linear RF has a number of inherent problems: it changes with the input, it presupposes a set of basis functions for the visual system, and it conflicts with recent studies on dendritic computations. Here we propose to model the RF in a nonlinear manner, introducing the intrinsically nonlinear receptive field (INRF). Apart from being more physiologically plausible and embodying the efficient representation principle, the INRF has a key property of wide-ranging implications: for several vision science phenomena where a linear RF must vary with the input in order to predict responses, the INRF can remain constant under different stimuli. We also prove that Artificial Neural Networks with INRF modules instead of linear filters have a remarkably improved performance and better emulate basic human perception. Our results suggest a change of paradigm for vision science as well as for artificial intelligence

    Piezoelectric Microresonators Based on Aluminim Nitride for Mass Sensing Applications

    Full text link
    Abstract—In this work we analyze the vibrational behavior of microresonators (cantilevers and bridges) actuated with piezoelectric aluminum nitride (AlN) films, to investigate the suitability of these devices as mass sensors. The resonators of different geometries consisted of a freestanding unimorph structure made up of a metal/AlN/metal piezoelectric stack supported by a Si3N4 structural layer. The out-of-plane motion of the resonators was assessed by laser interferometry. The electrical impedance of the devices exhibited significant variations at some resonant frequencies ranging from 0.5 MHz to 13 MHz. The mass sensitivity of the microresonators was evaluated through the frequency shift of the resonant modes when loading the resonators with SiO2 films. High order resonant modes provided higher mass sensitivities, with values as low as 6 ag/Hz, which improved significantly our previous results

    Tunable mechanical resonator with aluminum nitride piezoelectric

    Full text link
    The electromechanical response of piezoelectrically-actuated AlN micromachined bridge resonators has been characterized using laser interferometry and electrical admittance measurements. We compare the response of microbridges with different dimensions and buckling (induced by the initial residual stress of the layers). The resonance frequencies are in good agreement with numerical simulations of the electromechanical behavior of the structures. We show that it is possible to perform a rough tuning of the resonance frequencies by allowing a determined amount of builtin stress in the microbridge during its fabrication. Once the resonator is made, a DC bias added to the AC excitation signal allows to fine-tune the frequency. Our microbridges yield a tuning factor of around 88 Hz/V for a 500 ?m-long microbridge

    On the synthesis of visual illusions using deep generative models

    No full text
    Visual illusions expand our understanding of the visual system by imposing constraints in the models in two different ways: i) visual illusions for humans should induce equivalent illusions in the model, and ii) illusions synthesized from the model should be compelling for human viewers too. These constraints are alternative strategies to find good vision models. Following the first research strategy, recent studies have shown that artificial neural network architectures also have human-like illusory percepts when stimulated with classical hand-crafted stimuli designed to fool humans. In this work we focus on the second (less explored) strategy: we propose a framework to synthesize new visual illusions using the optimization abilities of current automatic differentiation techniques. The proposed framework can be used with classical vision models as well as with more recent artificial neural network architectures. This framework, validated by psychophysical experiments, can be used to study the difference between a vision model and the actual human perception and to optimize the vision model to decrease this difference

    On the synthesis of visual illusions using deep generative models

    No full text
    Visual illusions expand our understanding of the visual system by imposing constraints in the models in two different ways: i) visual illusions for humans should induce equivalent illusions in the model, and ii) illusions synthesized from the model should be compelling for human viewers too. These constraints are alternative strategies to find good vision models. Following the first research strategy, recent studies have shown that artificial neural network architectures also have human-like illusory percepts when stimulated with classical hand-crafted stimuli designed to fool humans. In this work we focus on the second (less explored) strategy: we propose a framework to synthesize new visual illusions using the optimization abilities of current automatic differentiation techniques. The proposed framework can be used with classical vision models as well as with more recent artificial neural network architectures. This framework, validated by psychophysical experiments, can be used to study the difference between a vision model and the actual human perception and to optimize the vision model to decrease this difference
    corecore