42 research outputs found

    Clinimetric evaluation of active range of motion measures in patients with non-specific neck pain: a systematic review

    Get PDF
    The study is to provide a critical analysis of the research literature on clinimetric properties of instruments that can be used in daily practice to measure active cervical range of motion (ACROM) in patients with non-specific neck pain. A computerized literature search was performed in Medline, Cinahl and Embase from 1982 to January 2007. Two reviewers independently assessed the clinimetric properties of identified instruments using a criteria list. The search identified a total of 33 studies, investigating three different types of measurement instruments to determine ACROM. These instruments were: (1) different types of goniometers/inclinometers, (2) visual estimation, and (3) tape measurements. Intra- and inter-observer reliability was demonstrated for the cervical range of motion instrument (CROM), Cybex electronic digital instrument (EDI-320) and a single inclinometer. The presence of agreement was assessed for the EDI-320 and a single inclinometer. The CROM received a positive rating for construct validity. When clinical acceptability is taken into account both the CROM and the single inclinometer can be considered appropriate instruments for measuring the active range of motion in patients with non-specific neck pain in daily practice. Reliability is the aspect most frequently evaluated. Agreement, validity and responsiveness are documented less frequently

    Accelerated Partial Breast Irradiation (APBI): A review of available techniques

    Get PDF
    Breast conservation therapy (BCT) is the procedure of choice for the management of the early stage breast cancer. However, its utilization has not been maximized because of logistics issues associated with the protracted treatment involved with the radiation treatment. Accelerated Partial Breast Irradiation (APBI) is an approach that treats only the lumpectomy bed plus a 1-2 cm margin, rather than the whole breast. Hence because of the small volume of irradiation a higher dose can be delivered in a shorter period of time. There has been growing interest for APBI and various approaches have been developed under phase I-III clinical studies; these include multicatheter interstitial brachytherapy, balloon catheter brachytherapy, conformal external beam radiation therapy and intra-operative radiation therapy (IORT). Balloon-based brachytherapy approaches include Mammosite, Axxent electronic brachytherapy and Contura, Hybrid brachytherapy devices include SAVI and ClearPath. This paper reviews the different techniques, identifying the weaknesses and strength of each approach and proposes a direction for future research and development. It is evident that APBI will play a role in the management of a selected group of early breast cancer. However, the relative role of the different techniques is yet to be clearly identified

    Bridging taxonomic and disciplinary divides in infectious disease

    Get PDF
    Citation: Borer, E.T., & Antonovics, J. (2011). Bridging Taxonomic and Disciplinary Divides in Infectious Disease. EcoHealth 8, 261–267. https://doi.org/10.1007/s10393-011-0718-6Pathogens traverse disciplinary and taxonomic boundaries, yet infectious disease research occurs in many separate disciplines including plant pathology, veterinary and human medicine, and ecological and evolutionary sciences. These disciplines have different traditions, goals, and terminology, creating gaps in communication. Bridging these disciplinary and taxonomic gaps promises novel insights and important synergistic advances in control of infectious disease. An approach integrated across the plant-animal divide would advance our understanding of disease by quantifying critical processes including transmission, community interactions, pathogen evolution, and complexity at multiple spatial and temporal scales. These advances require more substantial investment in basic disease research

    OX40 interactions in gastrointestinal nematode infection

    No full text
    The immune expulsion of gastrointestinal nematode parasites is usually associated with T helper type 2 (Th2) responses, but the effector mechanisms directly responsible for parasite loss have not been elucidated. The intestinal inflammatory response accompanying infection with gastrointestinal helminths is thought to be a contributory factor leading to the expulsion of the parasite. However, we have shown that the intestinal inflammation, which is controlled by interleukin (IL)-4, is not required for parasite expulsion. OX40–OX40 ligand (L) signals have been shown to be important for the development of Th2 immune responses but are also involved in a number of inflammatory diseases including those of the intestine. Here, we have investigated the effect of OX40 and OX40L fusion protein treatment on the induction of protective Th2 responses and enteropathy following infection with the gastrointestinal nematode Trichinella spiralis. Treatment with an OX40–immunoglobulin (Ig) blocking fusion protein resulted in enhanced expulsion of the parasite and an increase in the accompanying mastocytosis, despite unaltered levels of Th2 cytokines. Furthermore, there was a delay in the villus atrophy and crypt hyperplasia usually associated with this infection. In contrast, levels of Th2 cytokines were greatly up-regulated in mice treated with an OX40L–Ig activating fusion protein, yet the expulsion of the parasite and the enteropathy were unaffected. Therefore, OX40 ligation potentiates the Th2 response without enhancing host protective immune responses, whereas blocking the OX40–OX40L interaction enhances host protection without promoting Th2 cytokine responses during Trichinella spiralis infection

    Fundamental differences in diversity and genomic population structure between Atlantic and Pacific Prochlorococcus

    No full text
    The Atlantic and Pacific Oceans represent different biogeochemical regimes in which the abundant marine cyanobacterium Prochlorococcus thrives. We have shown that Prochlorococcus populations in the Atlantic are composed of hundreds of genomically, and likely ecologically, distinct coexisting subpopulations with distinct genomic backbones. Here we ask if differences in the ecology and selection pressures between the Atlantic and Pacific are reflected in the diversity and genomic composition of their indigenous Prochlorococcus populations. We applied large-scale single-cell genomics and compared the cell-by-cell genomic composition of wild populations of co-occurring cells from samples from Station ALOHA off Hawaii, and from Bermuda Atlantic Time Series Station off Bermuda. We reveal fundamental differences in diversity and genomic structure of populations between the sites. The Pacific populations are more diverse than those in the Atlantic, composed of significantly more coexisting subpopulations and lacking dominant subpopulations. Prochlorococcus from the two sites seem to be composed of mostly non-overlapping distinct sets of subpopulations with different genomic backbones—likely reflecting different sets of ocean-specific micro-niches. Furthermore, phylogenetically closely related strains carry ocean-associated nutrient acquisition genes likely reflecting differences in major selection pressures between the oceans. This differential selection, along with geographic separation, clearly has a significant role in shaping these populations
    corecore