1,183 research outputs found
Gamma–ray spectroscopy with single–carrier collection in high–resistivity semiconductors
With the standard plane–parallel configuration of semiconductor detectors, good γ–ray spectra can only be obtained when both electrons and holes are completely collected. We show by calculations (and experiments) that with contacts of hemispherical configuration one can obtain γ–ray spectra of adequate resolution and with signal heights of nearly full amplitude even when only one type of carrier is collected. Experiments with CdTe detectors for which the µτ product for electrons is about 10^(3) times that of the holes confirm these calculations. The adoption of hemispherical contacts thus widens the range of high–resistivity semiconductors potentially acceptable for γ–ray detection at room temperature
Composition-Dependent Hydrogen-Bonding Motifs and Dynamics in Brønsted Acid-Base Mixtures
In recent years the interaction of organophosphates and imines, which is at the core of Brønsted acid organocatalysis, has been established to be based on strong ionic hydrogen bonds. Yet, besides the formation of homodimers consisting of two acid molecules and heterodimers consisting of one acid and one base, also multimeric molecular aggregates are formed in solution. These multimeric aggregates consist of one base and several acid molecules. The details of the intermolecular bonding in such aggregates, however, have remained elusive. To characterize compositiondependent bonding and bonding dynamics in these aggregates, we use linear and nonlinear infrared (IR) spectroscopy at varying molar ratios of diphenyl phosphoric acid and quinaldine. We identify the individual aggregate species, giving rise to the structured, strong, and very broad infrared absorptions, which span more than 1000 cm −1. Linear infrared spectra and density functional theory calculations of the proton transfer potential show that doubly ionic intermolecular hydrogen bonds between the acid and the base lead to absorptions which peak at ∼2040 cm −1. The contribution of singly ionic hydrogen bonds between an acid anion and an acid molecule is observed at higher frequencies. As common to such strong hydrogen bonds, ultrafast IR spectroscopy reveals rapid, ∼ 100 fs, dissipation of energy from the proton transfer coordinate. Yet, the full dissipation of the excess energy occurs on a ∼0.8−1.1 ps time scale, which becomes longer when multimers dominate. Our results thus demonstrate the coupling and collectivity of the hydrogen bonds within these complexes, which enable efficient energy transfer
Humidification Factors from Laboratory Studies of Fresh Smoke from Biomass Fuels
Measurements of smoke aerosol humidification factors were performed in a laboratory for different biomass fuel types and burn conditions. Two nephelometers simultaneously measured dry and humidified light scattering coefficients (bsp(dry) and bsp(RH), respectively), providing the first observations of the temporal evolution of the humidification factor (f(RH) = bsp(RH)/bsp(dry)) for fresh (minutes-old) smoke. Hygroscopic characteristics of the smoke aerosols varied with fuel type and fire conditions, with the mean f(RH) ranging from 1.01 to 1.95 for fresh minutes-old smoke for the relative humidity (RH) range of 70-94%. These f(RH) values exhibited temporal variability, with some fuels alternating from hygroscopic to nonhygroscopic within minutes. Humidograms were also obtained, demonstrating that smoke from different fuels begins to take up water at different RH values. Humidification factors for hour-old smoke ranged from 1.10 to 1.51 for RH \u3e 90%. Finally, light-absorbing carbon mass measured with a multiwavelength aethalometer demonstrated different spectral responses as a function of fuel type. These laboratory experiments demonstrate the complexity of smoke hygroscopicity from young fires and are essential for understanding the radiative effects of biomass burning in the ambient atmosphere
Chandra X-ray Observations of the Quadruply Lensed Quasar RX J0911.4+0551
We present results from X-ray observations of the quadruply lensed quasar RX
J0911.4+0551 using data obtained with the Advanced CCD Imaging Spectrometer
(ACIS) on board the Chandra X-ray Observatory. The 29 ks observation detects a
total of ~404 X-ray photons (0.3 to 7.0 keV) from the four images of the lensed
quasar. Deconvolution of the aspect corrected data resolves all four lensed
images, with relative positions in good agreement with optical measurements.
When compared to contemporaneous optical data, one of the lensed images
(component A3) is dimmer by a factor of ~6 in X-rays with respect to the 2
brighter images (components A1 and A2). Spectral fitting for the combined
images shows significant intrinsic absorption in the soft (0.2 to 2.4 keV)
energy band, consistent with the mini-BAL nature of this quasar, while a
comparison with ROSAT PSPC observations from 1990 shows a drop of ~6.5 in the
total soft bandpass flux. The observations also detect ~157 X-ray photons
arising from extended emission of the nearby cluster (peaked ~42" SW of
RXJ0911.4+0551) responsible for the large external shear present in the system.
The Chandra observation reveals the cluster emission to be complex and
non-spherical, and yields a cluster temperature of kT = 2.3^{+1.8}_{-0.8} keV
and a 2.0 to 10 keV cluster luminosity within a 1 Mpc radius of L_X =
7.6_{-0.2}^{+0.6} x 10^{43} ergs/s (error bars denote 90% confidence limits).
Our mass estimate of the cluster within its virial radius is 2.3^{+1.8}_{-0.7}
x 10^{14} solar, and is a factor of 2 smaller than, although consistent with,
previous mass estimates based on the observed cluster velocity dispersion.Comment: 16 pages, 3 figures (figure 1 is color ps). Accepted by Ap
Can global models ignore the chemical composition of aerosols?
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94766/1/grl27306.pd
Measured and modeled humidification factors of fresh smoke particles from biomass burning: role of inorganic constituents
During the 2006 FLAME study (<b>F</b>ire <b>L</b>aboratory <b>a</b>t <b>M</b>issoula <b>E</b>xperiment), laboratory burns of biomass fuels were performed to investigate the physico-chemical, optical, and hygroscopic properties of fresh biomass smoke. As part of the experiment, two nephelometers simultaneously measured dry and humidified light scattering coefficients (<i>b</i><sub>sp(dry) </sub> and <i>b</i><sub>sp(RH)</sub>, respectively) in order to explore the role of relative humidity (RH) on the optical properties of biomass smoke aerosols. Results from burns of several biomass fuels from the west and southeast United States showed large variability in the humidification factor (<i>f</i>(RH)=<i>b</i><sub>sp(RH)</sub>/<i>b</i><sub>sp(dry)</sub>). Values of <i>f</i>(RH) at RH=80–85% ranged from 0.99 to 1.81 depending on fuel type. We incorporated measured chemical composition and size distribution data to model the smoke hygroscopic growth to investigate the role of inorganic compounds on water uptake for these aerosols. By assuming only inorganic constituents were hygroscopic, we were able to model the water uptake within experimental uncertainty, suggesting that inorganic species were responsible for most of the hygroscopic growth. In addition, humidification factors at 80–85% RH increased for smoke with increasing inorganic salt to carbon ratios. Particle morphology as observed from scanning electron microscopy revealed that samples of hygroscopic particles contained soot chains either internally or externally mixed with inorganic potassium salts, while samples of weak to non-hygroscopic particles were dominated by soot and organic constituents. This study provides further understanding of the compounds responsible for water uptake by young biomass smoke, and is important for accurately assessing the role of smoke in climate change studies and visibility regulatory efforts
Livestock grazing impacts components of the breeding productivity of a common upland insectivorous passerine:Results from a long-term experiment
The intensity of pastoral management in areas of High Nature Value farming is declining in some regions of Europe but increasing in others. This affects open habitats of conservation concern, such as the British uplands, where bird species that benefit from low-intensity grazing may be most sensitive to such polarization. While experimental manipulations of livestock grazing intensities have improved our understanding of upland breeding bird responses in the short term, none have examined the long-term impacts of altered management on reproductive success. Using a replicated landscape-scale experiment that started in 2003, we investigated the effects of four grazing treatments (intensive sheep; low-intensity sheep; low-intensity mixed sheep and cattle; and no grazing) on the breeding productivity of meadow pipits Anthus pratensis, the most common upland passerine. Surveys were carried out systematically during early (2003 and 2004) and late (2015 and 2016) sampling periods of the experiment to compare the short- and long-term effects of grazing treatments on breeding density and productivity of pipits specifically, but also on the overall bird community. Pipit breeding density was lowest under low-intensity sheep grazing while the highest egg-stage nest survival was observed in the same treatment, although no significant treatment effects were detected on overall nest survival or fledgling output. There were no significant differences in treatment effects between the sampling periods on any breeding variable, but overall nest survival was lower in the later sampling period across all treatments. Breeding bird species richness differed between treatments in the later sampling period, with highest species richness in the ungrazed treatment. Synthesis and applications. Livestock grazing management can have different outcomes for different upland birds. Our results showed that, with time, meadow pipit breeding productivity tended to be higher when sheep grazing intensity was reduced and/or mixed with cattle, and lower when livestock were removed, but not significantly so. Removal of grazing, however, can significantly increase bird species richness. The long-term experiment showed an overall decline in fledglings regardless of grazing treatments, potentially a result of increased predator numbers harboured by nearby developing woodland, highlighting the importance of considering wider landscape processes in grazing management decisions.</p
Nanostructure of cellulose microfibrils in spruce wood
The structure of cellulose microfibrils in wood is not known in detail, despite the abundance of cellulose in woody biomass and its importance for biology, energy, and engineering. The structure of the microfibrils of spruce wood cellulose was investigated using a range of spectroscopic methods coupled to small-angle neutron and wide-angle X-ray scattering. The scattering data were consistent with 24-chain microfibrils and favored a “rectangular” model with both hydrophobic and hydrophilic surfaces exposed. Disorder in chain packing and hydrogen bonding was shown to increase outwards from the microfibril center. The extent of disorder blurred the distinction between the I alpha and I beta allomorphs. Chains at the surface were distinct in conformation, with high levels of conformational disorder at C-6, less intramolecular hydrogen bonding and more outward-directed hydrogen bonding. Axial disorder could be explained in terms of twisting of the microfibrils, with implications for their biosynthesis
Globally Distributed Drug Discovery of New Antibiotics: Design and Combinatorial Synthesis of Amino Acid Derivatives in the Organic Chemistry Laboratory
An experiment for the synthesis of N-acyl derivatives of natural amino acids has been developed as part of the Distributed Drug Discovery (D3) program. Students use solid-phase synthesis techniques to complete a three-step, combinatorial synthesis of six products, which are analyzed using LC–MS and NMR spectroscopy. This protocol is suitable for introductory organic laboratory students and has been successfully implemented at multiple academic sites internationally. Accompanying prelab activities introduce students to SciFinder and to medicinal chemistry design principles. Pairing of these activities with the laboratory work provides students an authentic and cohesive research project experience
- …