18 research outputs found

    Synthesis of Carbon Nanotubes and Nanofibers on Silica and Cement Matrix Materials

    Get PDF
    In order to create strong composite materials, a good dispersion of carbon nanotubes (CNTs) and nanofibers (CNFs) in a matrix material must be obtained. We proposed a simple method of growing the desirable carbon nanomaterial directly on the surface of matrix particles. CNTs and CNFs were synthesised on the surface of model object, silica fume particles impregnated by iron salt, and directly on pristine cement particles, naturally containing iron oxide. Acetylene was successfully utilised as a carbon source in the temperature range from 550 to 750 C. 5–10 walled CNTs with diameters of 10–15 nm at 600 C and 12–20 nm at 750 C were synthesised on silica particles. In case of cement particles, mainly CNFs with a diameter of around 30 nm were grown. It was shown that high temperatures caused chemical and physical transformation of cement particles.Peer reviewe

    A novel cement-based hybrid material

    Get PDF
    Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) are known to possess exceptional tensile strength, elastic modulus and electrical and thermal conductivity. They are promising candidates for the next-generation high-performance structural and multi-functional composite materials. However, one of the largest obstacles to creating strong, electrically or thermally conductive CNT/CNF composites is the difficulty of getting a good dispersion of the carbon nanomaterials in a matrix. Typically, time-consuming steps of purification and functionalization of the carbon nanomaterial are required. We propose a new approach to grow CNTs/CNFs directly on the surface of matrix particles. As the matrix we selected cement, the most important construction material. We synthesized in a simple one-step process a novel cement hybrid material (CHM), wherein CNTs and CNFs are attached to the cement particles. The CHM has been proven to increase 2 times the compressive strength and 40 times the electrical conductivity of the hardened paste, i.e. concrete without sand.Peer reviewe

    Cu-II(atsm) Attenuates Neuroinflammation

    Get PDF
    Background: Neuroinflammation and biometal dyshomeostasis are key pathological features of several neurodegenerative diseases, including Alzheimer's disease (AD). Inflammation and biometals are linked at the molecular level through regulation of metal buffering proteins such as the metallothioneins. Even though the molecular connections between metals and inflammation have been demonstrated, little information exists on the effect of copper modulation on brain inflammation. Methods: We demonstrate the immunomodulatory potential of the copper bis(thiosemicarbazone) complex Cu-II(atsm) in an neuroinflammatory model in vivo and describe its anti-inflammatory effects on microglia and astrocytes in vitro. Results: By using a sophisticated in vivo magnetic resonance imaging (MRI) approach, we report the efficacy of Cu-II(atsm) in reducing acute cerebrovascular inflammation caused by peripheral administration of bacterial lipopolysaccharide (LPS). Cu-II(atsm) also induced anti-inflammatory outcomes in primary microglia [significant reductions in nitric oxide (NO), monocyte chemoattractant protein 1 (MCP-1), and tumor necrosis factor (TNF)] and astrocytes [significantly reduced NO, MCP-1, and interleukin 6 (IL-6)] in vitro. These anti-inflammatory actions were associated with increased cellular copper levels and increased the neuroprotective protein metallothionein-1 (MT1) in microglia and astrocytes. Conclusion: The beneficial effects of Cu-II(atsm) on the neuroimmune system suggest copper complexes are potential therapeutics for the treatment of neuroinflammatory conditions.Peer reviewe

    PSEN1ΔE9, APPswe, and APOE4 Confer Disparate Phenotypes in Human iPSC-Derived Microglia

    Get PDF
    Summary Here we elucidate the effect of Alzheimer disease (AD)-predisposing genetic backgrounds, APOE4, PSEN1ΔE9, and APPswe, on functionality of human microglia-like cells (iMGLs). We present a physiologically relevant high-yield protocol for producing iMGLs from induced pluripotent stem cells. Differentiation is directed with small molecules through primitive erythromyeloid progenitors to re-create microglial ontogeny from yolk sac. The iMGLs express microglial signature genes and respond to ADP with intracellular Ca2+ release distinguishing them from macrophages. Using 16 iPSC lines from healthy donors, AD patients and isogenic controls, we reveal that the APOE4 genotype has a profound impact on several aspects of microglial functionality, whereas PSEN1ΔE9 and APPswe mutations trigger minor alterations. The APOE4 genotype impairs phagocytosis, migration, and metabolic activity of iMGLs but exacerbates their cytokine secretion. This indicates that APOE4 iMGLs are fundamentally unable to mount normal microglial functionality in AD.Peer reviewe

    CuII(atsm) Attenuates Neuroinflammation

    Get PDF
    Background: Neuroinflammation and biometal dyshomeostasis are key pathological features of several neurodegenerative diseases, including Alzheimer’s disease (AD). Inflammation and biometals are linked at the molecular level through regulation of metal buffering proteins such as the metallothioneins. Even though the molecular connections between metals and inflammation have been demonstrated, little information exists on the effect of copper modulation on brain inflammation.Methods: We demonstrate the immunomodulatory potential of the copper bis(thiosemicarbazone) complex CuII(atsm) in an neuroinflammatory model in vivo and describe its anti-inflammatory effects on microglia and astrocytes in vitro.Results: By using a sophisticated in vivo magnetic resonance imaging (MRI) approach, we report the efficacy of CuII(atsm) in reducing acute cerebrovascular inflammation caused by peripheral administration of bacterial lipopolysaccharide (LPS). CuII(atsm) also induced anti-inflammatory outcomes in primary microglia [significant reductions in nitric oxide (NO), monocyte chemoattractant protein 1 (MCP-1), and tumor necrosis factor (TNF)] and astrocytes [significantly reduced NO, MCP-1, and interleukin 6 (IL-6)] in vitro. These anti-inflammatory actions were associated with increased cellular copper levels and increased the neuroprotective protein metallothionein-1 (MT1) in microglia and astrocytes.Conclusion: The beneficial effects of CuII(atsm) on the neuroimmune system suggest copper complexes are potential therapeutics for the treatment of neuroinflammatory conditions

    Microscratch testing method for systematic evaluation of the adhesion of atomic layer deposited thin films on silicon

    No full text
    The scratch test method is widely used for adhesion evaluation of thin films and coatings. Usual critical load criteria designed for scratch testing of coatings were not applicable to thin atomic layer deposition (ALD) films on silicon wafers. Thus, the bases for critical load evaluation were established and the critical loads suitable for ALD coating adhesion evaluation on silicon wafers were determined in this paper as LCSi1, LCSi2, LCALD1, and LCALD2, representing the failure points of the silicon substrate and the coating delamination points of the ALD coating. The adhesion performance of the ALD Al2O3, TiO2, TiN, and TaCNĂľRu coatings with a thickness range between 20 and 600 nm and deposition temperature between 30 and 410 C on silicon wafers was investigated. In addition, the impact of the annealing process after deposition on adhesion was evaluated for selected cases. The tests carried out using scratch and Scotch tape test showed that the coating deposition and annealing temperature, thickness of the coating, and surface pretreatments of the Si wafer had an impact on the adhesion performance of the ALD coatings on the silicon wafer. There was also an improved load carrying capacity due to Al2O3, the magnitude of which depended on the coating thickness and the deposition temperature. The tape tests were carried out for selected coatings as a comparison. The results show that the scratch test is a useful and applicable tool for adhesion evaluation of ALD coatings, even when carried out for thin (20 nm thick) coatings.peerReviewe

    Thermomechanical properties of aluminum oxide thin films made by atomic layer deposition

    Get PDF
    In microelectromechanical system devices, thin films experience thermal processing at temperatures some cases exceeding the growth or deposition temperature of the film. In the case of the thin film grown by atomic layer deposition (ALD) at relatively low temperatures, post-ALD thermal processing or high device operation temperature might cause performance issues at device level or even device failure. In this work, residual stress and the role of intrinsic stress in ALD Al2O3 films grown from Me3Al and H2O, O3, or O2 (plasma ALD) were studied via post-ALD thermal processing. Thermal expansion coefficient was determined using thermal cycling and the double substrate method. For some samples, post-ALD thermal annealing was done in nitrogen at 300, 450, 700, or 900 °C. Selected samples were also studied for crystallinity, composition, and optical properties. Samples that were thermally annealed at 900 °C had increased residual stress value (1400–1600 MPa) upon formation of denser Al2O3 phase. The thermal expansion coefficient varied somewhat between Al2O3 made using different oxygen precursors. For thermal-Al2O3, intrinsic stress decreased with increasing growth temperature. ALD Al2O3 grown with plasma process had the lowest intrinsic stress. The results show that ALD Al2O3 grown at 200 and 300 °C is suitable for applications, where films are exposed to post-ALD thermal processing even at temperature of 700 °C without a major change in optical properties or residual stress.peerReviewe

    Tribological properties of thin films made by atomic layer deposition sliding against silicon

    No full text
    Interfacial phenomena, such as adhesion, friction, and wear, can dominate the performance and reliability of microelectromechanical (MEMS) devices. Here, thin films made by atomic layer deposition (ALD) were tested for their tribological properties. Tribological tests were carried out with silicon counterpart sliding against ALD thin films in order to simulate the contacts occurring in the MEMS devices. The counterpart was sliding in a linear reciprocating motion against the ALD films with the total sliding distances of 5 and 20 m. Al2O3 and TiO2 coatings with different deposition temperatures were investigated in addition to Al2O3-TiO2-nanolaminate, TiN, NbN, TiAlCN, a-C:H [diamondlike carbon (DLC)] coatings, and uncoated Si. The formation of the tribolayer in the contact area was the dominating phenomenon for friction and wear performance. Hardness, elastic modulus, and crystallinity of the materials were also investigated. The nitride coatings had the most favorable friction and wear performance of the ALD coatings, yet lower friction coefficient was measured with DLC a-C:H coating. These results help us to take steps toward improved coating solutions in, e.g., MEMS applicationspeerReviewe
    corecore