2,592 research outputs found

    Handling qualities aspects of NASA YF-12 flight experience

    Get PDF
    The handling qualities of the YF-12 airplane as observed during NASA research flights over the past five years were reviewed. Aircraft behavior during takeoff, acceleration, climb, cruise, descent, and landing are discussed. Pilot comments on the various flight phases and tasks are presented. Handling qualities parameters such as period, damping, amplitude ratios, roll-yaw coupling, and flight path response sensitivity are compared to existing and proposed handling qualities criteria. The influence of the propulsion systems, stability augmentation, autopilot systems, atmospheric gusts, and temperature changes are also discussed. YF-12 experience correlates well with flying qualities criteria, except for longitudinal short period damping, where existing and proposed criteria appear to be more stringent than necessary

    Partially Asymmetric Simple Exclusion Model in the Presence of an Impurity on a Ring

    Full text link
    We study a generalized two-species model on a ring. The original model [1] describes ordinary particles hopping exclusively in one direction in the presence of an impurity. The impurity hops with a rate different from that of ordinary particles and can be overtaken by them. Here we let the ordinary particles hop also backward with the rate q. Using Matrix Product Ansatz (MPA), we obtain the relevant quadratic algebra. A finite dimensional representation of this algebra enables us to compute the stationary bulk density of the ordinary particles, as well as the speed of impurity on a set of special surfaces of the parameter space. We will obtain the phase structure of this model in the accessible region and show how the phase structure of the original model is modified. In the infinite-volume limit this model presents a shock in one of its phases.Comment: Adding more references and doing minor corrections, 16 pages and 3 Eps figure

    Structural and electronic properties of oxygen defective and Se-doped p-type BiVO⁠4(001) thin film for the applications of photocatalysis

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this record.There is another record in ORE for this publication: http://hdl.handle.net/10871/36011Monoclinic BiVO4 is being used as a photocatalyst due to its stability, cost-effectiveness, ease of synthesis, and narrow band gap. Although, the valence band maximum, VBM (∼−6.80 eV vs vacuum) of BiVO4 is well below the redox potential of water but having less positive conduction band minimum, CBM (−4.56 eV vs vacuum), responsible for its low efficiency. We have carried out a comprehensive periodic density functional theory (DFT) simulations for the pristine, Oxygen defective (Ov) and Se doped BiVO4, to engineer not only its CB edge position but the overall photocatalytic and charge carrier properties. Our theoretical method has nicely reproduced the experimental data of pristine BiVO4, which encouraged us to elaborate further its Ov and Se-doped characteristics. It is found that both the Ov (1% Oxygen vacancy) and Se-doped BiVO4 (1–2% Se) have ideal band edges, band gaps, and small effective masses of electrons and holes, responsible for high photocatalytic activities. Moreover, Se-doped BiVO4 behave as p-type semiconductor. Finally, the photocatalytic water-splitting behaviour of the selected surfaces were counterchecked with water interaction, where the strong water adsorption energy of about ∼−38 to −50 kcal/mol, confirms and predicts their higher efficiencies compared to that of parent BiVO4.The financial support was provided by Engineering and Physical Science Research Council, UK (EPSRC) under the research grant No EP/P510956/1

    Reliability investigation for a built ultrahigh concentrator prototype

    Get PDF
    This is the final version of the article. Available from AIP Publishing via the DOI in this record.Ultrahigh concentrator photovoltaics hold a great potential in both reducing the cost of photovoltaic energy and to higher conversion efficiencies. The challenges in their design and manufacturing however have not yet permitted a reliable ultrahigh ( > 2000X) system. Here we propose an ultrahigh concentrator photovoltaic design of 5800X geometrical concentration ratio based on multiple primary Fresnel lenses focusing to one central solar cell. The final stage optic is of a novel design to accept light from four different directions and focus the light towards the solar cell. The extremely high geometrical concentration of 5800X was chosen in anticipation of the losses accompanied with ultrahigh concentration due to alignment difficulties. The system was designed with manufacturability as one of the priorities and resulted in easily achieving > 2000X concentration for a first prototype with non-achromatic Fresnel lenses and in house secondarys. Higher concentrations are anticipated for future prototypes but investigation into the cell performance is required. An acceptance angle of 0.4°was achieved for this design which is considered good for such an ultrahigh concentration level and what's more, even at higher misalignment angles (such as 0.8 or 1 degree) ultrahigh concentration ratios are still achieved in simulations. Such a design could be the breakthrough in concentrator photovoltaic research for reaching higher concentration ratios. The use of flat optics to ease manufacturing and alignment is a simple but effective method to achieve a reliable system that will achieve ultrahigh concentration even at 36% optical efficiency. Such a design will be of use in investigations of concentration, concentrator solar cell development, temperature effects and more; achieving ultrahigh concentration levels not yet tested.The authors acknowledge the funding bodies of the SUNTRAP project and as part of the encouragement of open access data, any part of the presented investigation and results can be given upon email request to the authors

    Structural and electronic properties of oxygen defective and Se-doped p-type BiVO⁠4(001) thin film for the applications of photocatalysis

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this record.There is another record in ORE fro this publication: http://hdl.handle.net/10871/30528Monoclinic BiVO4 is being used as a photocatalyst due to its stability, cost-effectiveness, ease of synthesis, and narrow band gap. Although, the valence band maximum, VBM (∼−6.80 eV vs vacuum) of BiVO4 is well below the redox potential of water but having less positive conduction band minimum, CBM (−4.56 eV vs vacuum), responsible for its low efficiency. We have carried out a comprehensive periodic density functional theory (DFT) simulations for the pristine, Oxygen defective (Ov) and Se doped BiVO4, to engineer not only its CB edge position but the overall photocatalytic and charge carrier properties. Our theoretical method has nicely reproduced the experimental data of pristine BiVO4, which encouraged us to elaborate further its Ov and Se-doped characteristics. It is found that both the Ov (1% Oxygen vacancy) and Se-doped BiVO4 (1–2% Se) have ideal band edges, band gaps, and small effective masses of electrons and holes, responsible for high photocatalytic activities. Moreover, Se-doped BiVO4 behave as p-type semiconductor. Finally, the photocatalytic water-splitting behaviour of the selected surfaces were counterchecked with water interaction, where the strong water adsorption energy of about ∼−38 to −50 kcal/mol, confirms and predicts their higher efficiencies compared to that of parent BiVO4.Engineering and Physical Sciences Research Council (EPSRC

    Classical diffusion of N interacting particles in one dimension: General results and asymptotic laws

    Full text link
    I consider the coupled one-dimensional diffusion of a cluster of N classical particles with contact repulsion. General expressions are given for the probability distributions, allowing to obtain the transport coefficients. In the limit of large N, and within a gaussian approximation, the diffusion constant is found to behave as N^{-1} for the central particle and as (\ln N)^{-1} for the edge ones. Absolute correlations between the edge particles increase as (\ln N)^{2}. The asymptotic one-body distribution is obtained and discussed in relation of the statistics of extreme events.Comment: 6 pages, 2 eps figure

    Matrix product solution to an inhomogeneous multi-species TASEP

    Full text link
    We study a multi-species exclusion process with inhomogeneous hopping rates. This model is equivalent to a Markov chain on the symmetric group that corresponds to a random walk in the affine braid arrangement. We find a matrix product representation for the stationary state of this model. We also show that it is equivalent to a graphical construction proposed by Ayyer and Linusson, which generalizes Ferrari and Martin's construction

    Experimental evaluation of a membrane distillation system for integration with concentrated photovoltaic/thermal (CPV/T) energy

    Get PDF
    AbstractResults are presented for a concentrated solar photovoltaic and thermal powered membrane distillation (MD) system for seawater desalination. Solar intensity data was input into a mathematical model for the solar energy system and out let temperature from the energy system was calculated. The MD module was tested for a fluctuating inlet temperature, as would be produced from a solar energy source. A maximum distillate flux of 3.4 l/m2h was recorded, though this did not correspond to the highest inlet temperature. An observed delay in the modules response to the fluctuations in temperature was due to the thermal mass of the MD unit. The conductivity of the distillate was measured to assess the effects of transient operation on the quality of the distillate produced. It was determined that although the quantity and quality of the distillate varied with the fluctuations in power supplied to the module, the effects were not significant enough to rule out the integration of the MD module with solar energy
    corecore