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A B S T R A C T

Monoclinic BiVO4 is being used as a photocatalyst due to its stability, cost-effectiveness, ease of synthesis, and
narrow band gap. Although, the valence band maximum, VBM (∼−6.80 eV vs vacuum) of BiVO4 is well below
the redox potential of water but having less positive conduction band minimum, CBM (−4.56 eV vs vacuum),
responsible for its low efficiency. We have carried out a comprehensive periodic density functional theory (DFT)
simulations for the pristine, Oxygen defective (Ov) and Se doped BiVO4, to engineer not only its CB edge position
but the overall photocatalytic and charge carrier properties. Our theoretical method has nicely reproduced the
experimental data of pristine BiVO4, which encouraged us to elaborate further its Ov and Se-doped characteris-
tics. It is found that both the Ov (1% Oxygen vacancy) and Se-doped BiVO4 (1–2% Se) have ideal band edges,
band gaps, and small effective masses of electrons and holes, responsible for high photocatalytic activities. More-
over, Se-doped BiVO4 behave as p-type semiconductor. Finally, the photocatalytic water-splitting behaviour of
the selected surfaces were counterchecked with water interaction, where the strong water adsorption energy of
about ∼−38 to −50 kcal/mol, confirms and predicts their higher efficiencies compared to that of parent BiVO4.

1. Introduction

Solar energy harnessing via photoelectrochemical (PEC) water split-
ting, using transition metal oxides, is a direct chemical energy conver-
sion and storage technique. Since the discovery of the first photocat-
alytic water splitting experiment, a range of transition metal oxides have
been employed to produce solar fuel [1]. An ideal photocatalyst must
have valance band (VB) and conduction band (CB), which straddle the
redox potentials of photocatalytic reaction, and must have high stabil-
ity, availability, and narrow band gap which can absorb efficiently the
visible part of sun light [2,3].

To date, the current focus semiconductors/photocatalysts are Fe2O3,
LaFeO3, TaON, LaCrO3, LaCoO3, TiO2, BiVO4, ZnS, ZnO2, Bi2WO6, Sr-
TiO3, BiOX (Cl, Br, I), and etc. Some of these semiconductors have ideal
band edges position but they are either unstable or having large band
gaps, while some of them are narrow band gap but one of the band
edges (either VB or CB) is situated at improper band edge energy (see
Scheme S1) [4]. So, the redox reaction cannot be completed without the
external bias potential (see reactions 1–3). Band structure engineering is
one of the excellent strategies to tailor the band edges and band gaps of
these semiconductors, through doping process [5–7].

Bismuth vanadate (BiVO4) is a promising photocatalyst for solar
energy conversion due to its nontoxic, low-cost, photostable, and
eco-friendly nature. Generally, BiVO4 has three different crystalline
polymorphs: orthorhombic pucherite, tetragonal dreyerite, and mon-
oclinic clinobisvanite [8]. These different polymorphs have different
properties as the photocatalytic activity is strongly influenced by the
crystal structure. For instance, the tetragonal BiVO4 possesses a band
gap of 2.9 eV and mainly absorbs UV region, while the monoclinic
clinobisvanite (m-BiVO4) exhibits a much higher photocatalytic activ-
ity due to
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its ideal band gap (2.4−2.5 eV) which absorb the UV and visible re-
gions of the electromagnetic spectrum, having an ideal valence band
edge position for driving water oxidation [9]. However, it has been re-
cently reported that m-BiVO4, an n-type semiconductor [10], exhibits
poor photocatalytic property which is stem to low mobility of the pho-
togenerated charge carriers (electron−hole pairs), positive potential of
CB (vs NHE) and high charge recombination rates which significantly
limit its practical applications. The photocatalytic activity of m-BiVO4
can be tuned either with metal or non-metal doping, semi-conductor re-
combination (heterojunction formation), depositing the co-catalysts, de-
fect formation (oxygen vacancy creation), and crystal-facet control or
morphological modification.

Moreover, it is important to investigate/design an efficient dopant
for BiVO4, which not only keeps its monoclinic crystal structure but to
slow down the charge recombination rate and more negative CB (vs
NHE) edge position. The monoclinic clinobisvanite structure of BiVO4,
consists of rows of isolated [VO4] tetrahedra which are separated by the
dodecahedral coordinated Bi atoms to form [BiO8] with eight O atoms
(Fig. 1).

In order to improve the overall photocatalytic activity of m-BiVO4
(simply denoted as BiVO4), different doping agents have been applied;
these doping agents have either substituted the (I) V or (II) Bi atoms but
no one has paid attention to substitute the (III) O site of BiVO4. The pre-
vious literature of different doping agents [11–18], used for BiVO4 can
be summarized as!

(I). Doping of BiVO4 at the V-sites is very common but due to dif-
ferent valence states of the dopant, a distortion in the [VO4] tetrahedral
chains cause phase transition from the parental monoclinic to tetragonal
structure (Fig. 1). This distortion of [VO4] tetrahedron chains in BiVO4,
plays a negative impact on the photocatalytic water-splitting, to gener-
ate H2 gas. On the other hand, monoclinic BiVO4 exhibits weak hole lo-
calization and is very helpful for water-splitting reaction. So, to keep the
[VO4] tetrahedral in the monoclinic structure of BiVO4, Luo et al. have
reported that ion doping with higher valence states such as Mo6+ and
W6+, to substitute V in BiVO4, not only keep the parental geometry but
also enhanced its photocatalytic activity [19].

(II). Another useful dopant agent which keeps the tetrahedral geo-
metrical part of [VO4] is Ce3+, which substitutes the Bi3+ sites in BiVO4.
Ce3+ is a trivalent cation and has similar ionic radius to that of Bi3+,
substitutes the Bi-sites and not the V-sites (V5+). Z. Jiang et al. have in-
vestigated that Ce3+ ions doped-BiVO4 (Ce-BiVO4) do not distort either
the octahedral and dodecahedral geometries but act as trapping agent
for the photogenerated holes which is responsible for the higher photo-
catalytic water oxidation activity compared to that of pristine one [20].

(III). No one has paid attention to substitute the O-sites in BiVO4,
and we believe that its substitution with di-anionic species such as sele

Fig. 1. Tetrahedral and dodecahedra geometries of VO4 (a) and BiO8 (b) in BiVO4 (c).

nium (Se2−), with appropriate amount of doping ratio, will not disturb
both the [VO4] and [BiO8] geometries. Furthermore, Se2− would have
dual attachment in the BiVO4, coordinated with Bi on one hand and
with V on the other side.

In this work, we investigated the effect of Oxygen vacancy and
Se-dopant for the geometrical structure and corresponding photocat-
alytic activity of BiVO4.

2. Computational methodology

First principle periodic boundary density functional theory (DFT)
simulations are carried out, using Quantum ESPRESSO [21] and Quan-
tumWise-ATK [22] while the results are visualized on VESTA [23] and
vnl 2017.0 [24]. The experimentally observed crystallographic file of
BiVO4; clinobisvanite structure is used as such which has Hall sym-
metry space group of I2/b with lattice parameters of a = 5.147 Å,
b = 5.147 Å, c = 11.7216 Å, and γ = 90° (See Fig. 1) [25]. General-
ized gradient approximation (GGA) at Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional is used for the structural and energy op-
timization [26]. As an input structure for the calculations; the 24 atoms
primitive unit cell and its 2 × 2 × 2 supercell along with (001) direction
with 10 Å vacuum, is considered as a model for the periodic bound-
ary condition (PBC) DFT simulations. The local density approximation
(LDA) method is found to be superior in reproducing the experimen-
tal data of BiVO4, compared to pure GGA and meta GGA (MGGA). The
detailed comparison of these methods is given in Supporting Informa-
tion (Fig. S1 and S3). Generally, it is believed that clinobisvanite mono-
clinic BiVO4 exists in (001) orientation so, that is why the (001) slab is
opted for the theoretical simulations to represent its experimental thin
film [27]. Moreover, the unreconstructed (001) termination possesses
low surface energy and as a result represents the most probable sur-
face termination [27]. Stability of these different slabs are confirmed
from their positive formation energy and electrostatic potential; details
of surface formation energy is give in Table S1 and Fig. S4-10 of the
Supporting Information. A 5 × 5 × 1 Monkhorst-Pack k-grid and energy
cutoff of 100 Ry is employed for the geometry relaxation and self-con-
sistent (SCF) simulations of BiVO4; consisting of 96 atoms. The Broy-
den-Fletcher-Goldfarb-Shanno algorithm (BFGS) is used for the struc-
tural relaxation [28]. A 5 × 5 × 5 Monkhorst-Pack k-grid with the same
energy cutoff is used for the non-SCF part to get the density of states
(DOS) and partial DOS (PDOS). The band structure simulations were
performed along the direction of Γ, Z, R, X, and M of the Brillouin zone.
The valence electron configurations considered are: 5d10 6s2 6p3 for Bi;
3p6 3d3 4s2 for V; 2s2 2p4 for O, 1s2 for H, and 4s2 4p4 3d10 for Se atom.

3. Results and discussion

3.1. Optimized structures of pristine, oxygen defective, and Se-Doped
BiVO4(001)

The removal of an oxygen atom, and Se dopant on the tetrahedral
or dodecahedra geometries of monoclinic clinobisvanite is investigated
from the resulting relaxed geometries. Optimized structures of these dif-
ferent species of BiVO4 are given in Fig. 2, where the bond distances
between V O and Bi O decrease; considering the case of Ov and
Se-doped BiVO4(001). When the Se dopant ratio is increased from 2
to 3 or 4, it distorted the geometries of parent BiVO4(001) as can be
seen from Fig. 2. However, in case of 1–2% doping ratios, the resulted
geometries were quite compact and similar to parent BiVO4(001).

2



UN
CO

RR
EC

TE
D

PR
OOF

H. Ullah et al. Applied Catalysis B: Environmental xxx (2017) xxx-xxx

Fig. 2. Relaxed structures of (a) BiVO4(001), (b) Ov, (c) 1%, (d) 2%, (e) 3%, and (d) 4% Se doped BiVO4(001).

3.2. Electronic properties

3.2.1. Electronic properties of BiVO4(001) surface
As discussed in our previous report [29], that the monoclinic clino-

bisvanite phase exhibits a much higher photocatalytic activity compared
to its other polymorphs due to its favourable band gap (2.4−2.5 eV) in
the visible region of electromagnetic spectrum and a valence band posi-
tion suitable for driving water oxidation [9].

The electronic properties such as DOS/PDOS and band structure of
BiVO4(001) are given in Fig. 3, where its band gap is 2.24 eV. This
band gap is about 0.16 eV smaller than that of experimental but it is
expected from LDA [30], which underestimate the band gap. However,
it has nicely reproduced both the VB and CB edge positons of pristine
BiVO4(001); ca. at −6.80 eV and −4.56 eV (vs vacuum), respectively.
Analysis of the PDOS led us to conclude that orbitals of O atoms are
responsible for developing valence band edge, however, the conduction
band edge is that of V atoms. Contribution of the s, p, and d orbitals of
Bi, V, and O, in making the band gap and edge positions are given in

Fig. S11 of the Supporting Information. The s and p orbitals of Bi atoms
consititute VB and CB edge of Bi, 3d orbitals of V are responsible for its
VB and CB while in case of O, 2p orbitals have a major role in develop-
ing their band edge positions. Band structure of the BiVO4(001) along
the k-points direction of Γ, Z, R, X, and M is given in Fig. 3, where an
indirect band gap of 2.24 eV has good agreement with the experimen-
tal and recently theoretical reported data [9]. Fruthermore, the simu-
lated band edge energies (VBM ∼−6.80 and CBM ∼−4.56 eV at vac-
uum level) of BiVO4 indicate that its CBM need to be engineered for high
PEC performance. The effective masses of the photogenerated electrons
(me

*) and holes (mh
*) along the X → Γ directions of k-points are calcu-

lated by fitting parabolic approximation around the bottom of the CBM
or the top of the VBM, respectively; using Eq. (1) (Table 1):
m? = ħ2 (d2 E/dk2) −1 (1)
where ħ is the reduced Planck constant, E is the energy of an electron
at wave vector k in the same band (VBM or CBM). The simulated val-
ues of the effective masses of photogenerated electrons and holes of the
BiVO4(001) are 0.09 and 0.28 me, respectively.

Fig. 3. Band Structure and PDOS plot of BiVO4(001); the Fermi energy is set to zero.
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Table 1
Fermi energy, % doping, VBM, CBM, Band Gap, and Effective Masses of Photogenerated Electrons and Holes, Estimated from the calculated Band Structure along the suitable direction.

Species Fermi Energy % Doping me*/m0 mh*/m0 VBM CBM Band gap

BiVO4(001) −6.18 Pure 0.09 0.28 −6.80 −4.56 2.24
Ov_BiVO4 −4.28 1.0 0.19 0.18 −6.29 −4.33 1.96
1Se_BiVO4(001) −5.17 1.04 0.09 0.02 −5.80 −4.41 1.39
2Se_BiVO4(001) −5.19 2.08 0.04 0.31 −5.81 −4.08 1.73
3Se_BiVO4(001) −4.93 3.0 0.65 2.02 −5.47 −4.39 1.08
4Se_BiVO4(001) −4.73 4.16 0.01 0.24 −5.38 −4.14 1.24

The integrated local DOS (ILDOS) of BiVO4(001) within various en-
ergetic windows of the VBM, CBM, band gap, and electrostatic poten-
tial (ESP) are presented in Fig. 4. The ILDOS at the CBM (0−1.6 eV), as
well as a cross section of the ILDOS through the (001) plane highlights
the primary contribution from V orbitals which can be found from Fig.
3 and Fig. S11. Localization of CBM electrons is because of the poor hy-
bridization of V neighbouring orbitals as can be seen from Figs. 3, 4 and
S11. The poor photoelectrochemical performance BiVO4 thin film can
be correlated with poor hole mobility (effective mass of hole ∼0.28 me)
rather than electron, which limits photocarrier transport and charge
extraction. The self-trapping and small electron polaron formation in
this material is due to the localization of photogenerated hole. Pristine
BiVO4(001) is an n-type semiconductor where the electrons play an im-
portant role in the photocatalytic reaction. This statement also corrob-
orate the already reported work of A. Rettie et al. [31] So, the relative
delocalized orbitals at CBM compared to VBM (Fig. 3) confirmed that
majority of hole, limit the charge transport in this material.

3.3. Electronic properties of oxygen vacancy BiVO4(001) surface

In order to understand the effect of oxygen vacancy (Ov) on the
photoelectrochemical performance of BiVO4, 1% Ov_BiVO4(001) is em-
ployed for DFT simulations. The VB and CB orbitals distributions are
almost similar to that of parent slab, however, the Fermi energy merge
in the CB which is due to the extra electron(s) of the Ov, as can be
seen from Fig. 5. It is also reported that monoclinic BiVO4 is normally
an intrinsic n-type semiconductor [32]. The contribution of V, Bi, and
O orbitals are comparatively given in Fig. S12 of the Supporting In-
formation. In this case, the electrons (0.19 me) are said to be the “ma-
jority carriers” for current flow (behave as an n-type semiconductor)
while the effective mass of holes is 0.18 me. Overall, small effective
masses of electrons and holes are estimated from the CBM and VBM of
Ov_BiVO4(001) compared to that of parent slab. At vacuum level, the
CBM and VBM are −6.29 and −4.33 eV, which are well above and
below the redox potential of water, respectively (Table 1). Moreover,
electron doping (Oxygen vacancy creation) of BiVO4 has not only re

Fig. 4. Integrated local density of states of CBM, VBM, Band gap and ESP of BiVO4(001).
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Fig. 5. Band Structure and PDOS plot of Ov_BiVO4(001); the Fermi energy is set to zero.

duced its band gap, but shift the CB to more positive potential (vs vac-
uum) as can be seen from Table 1.

3.4. Electronic properties of Se-Doped BiVO4(001) surfaces

In order to improve the photocatalytic performance of BiVO4, Se
is incorporated in the form of different dopant concentrations. Oxygen
atom(s) is substituted with Se in BiVO4(001), from 1 to 4% dopant ra-
tios, denoted as 1Se, 2Se, 3Se and 4Se_BiVO 4(001). 1% Se-doped has ex-
cellently improved the visible light absorption of BiVO4(001) as can be
seen from its band gap reduction, from 2.24 to 1.39 eV (Fig. 6 and Table
1). Moreover, p orbitals of Se constitute the VB of 1Se_BiVO 4(001), as
can be seen from its PDOS plot (Fig. 6). The individual PDOS plots of
Bi, V, O, and Se are shown in Fig. S13 of the Supporting Information. Se
has not only reduced the band gap of parent BiVO4, but changed both
the VB and CB, to −5.80 eV and −4.41 eV (vs vacuum), respectively.
Compared to parent BiVO4(001), 1Se_BiVO 4(001) has an ideal CBM po-
sition which is well above the redox potential of water, responsible for
water reduction. Se is a p-type dopant, which has produced some flat
bands in the VB of parent BiVO4(001), however, it has significantly re-
duced the effective masses of electrons and holes (Table 1). The effec-
tive masses of these photocarriers are 0.09 me for electron and 0.02 me
of hole (Note: for the effective masses of hole, we considered the third
band, below the VBM). On the other hand, flat band of VB produces
an effective mass of holes of about 7.12 me, which are responsible for
stationary holes. In summary, the high DOS in the VB Fermi level shift
towords CB is clear evidence of the p-type nature of 1Se_BiVO 4(001).
Moreover, 1Se_BiVO 4(001) can be used as a best photocatalyst for solar
water splitting due to its ideal band edges positions, narrow band gap,
and small effective masses of charge carriers (vide infra).

In the searching of an optimum dopant ratio of Se, to design an effi-
cient photocatalyst, we also considered the 2Se_BiVO 4(001) system. The
simulated band structure and PDOS of 2Se_BiVO 4(001) are given in Fig.
7, while its comparative PDOS plot for Bi, V, O, and Se atoms are given
in Fig. S14 of the Supporting Information. Again, the VB and CB are
made of Se and V atoms, respectively. The VB and CB of 2Se_BiVO 4(001)
are situated at −5.81 and −4.08 eV (at vacuum), respectively which
result band gap of 1.73 eV. Moreover, the simulated effective masses of
electrons and holes are 0.04 me and 0.31 me, respectively, which pre-
dict high carrier mobility and charge separation rate. Very similar to
1Se_BiVO 4(001), 2Se_BiVO 4(001) also behave as a p-type semiconductor
as can be seen from its band structure and PDOS plot. So, both the 1 and
2% Se doped BiVO4(001) have almost similar photocatalytic character-
istics and can be used for efficient water splitting, especially for water
reduction.

The effect of 3 and 4% Se on BiVO4(001) and their band gap and
effective masses of charge carriers are contrast to that of 1 and 2%, as
can be seen from Table 1 and Fig. 8. For simplicity reason, the band
gap and orbitals contribution of Bi, V, O, and Se of 3 and 4% Se-doped
BiVO4(001) are given in Fig. S15-S18 of the Supporting Information. Al-
though, this higher doping concentration has well reduced the bandgap
of parent BiVO4(001), 1.08 eV for 3 and 1.24 eV for 4% Se, but on the
other hand it has sufficiently increased the VB and CB values (vs vac-
uum). The CBM positions of both these systems is well above the redox
potential of water (vs vacuum) but the VBM is not able to perform the
oxidation of water, to complete the overall water splitting reaction. The
VBM and CBM of 3Se_BiVO 4(001) are −5.47 and −4.39 eV while that
of 4Se_BiVO 4(001) are −5.38 and −4.14 eV, respectively. For the effec-
tive masses of charge carriers of these two systems, see Table 1.

Fig. 6. Band structure and PDOS of 1% Se_BiVO4(001); the Fermi energy is set to zero.
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Fig. 7. Band Structure and PDOS plot of 2% Se_BiVO4-001; the Fermi energy is set to zero.

Fig. 8. PDOS plot of (a) 3Se and (b) 4Se_BiVO4(001); the Fermi energy is set to zero.

Comparative analysis of the Oxygen defective and Se doped (1–4%)
BiVO4(001), led us to conclude that both the defective and mild (1 and
2%) Se-Doped BiVO4(001) are best candidates for photocatalytic water
splitting, based on their simulated VB, CB, Bandgap and effective masses
of charge carriers.

3.5. Adsorption of water on pristine, oxygen defective, and 1% Se doped
BiVO4(001)

In order to elaborate the photocatalytic performance of the titled
species, we adsorb water molecules on the surface of pristine, Ov_ and
1Se_BiVO 4(001), see Fig. 9 for their relaxed structures. Two molecules
of water are adsorbed on each of these surfaces, optimized and fol-
lowed by electronic properties simulations such as bandgap, band edge
and effective masses of charge carriers. The adsorption energy of water

Fig. 9. Relaxed structure of (a) BiVO4(001)@H2O, (b) Ov_BiVO4(001)@H2O, (c) 1Se_BiVO4(001)@H2O, and (d) water.
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Table 2
Inter-bond distance, Water Adsorption Energy (Ead), and Bandgaps of Water Adsorbed-BiVO4(001), Ov, and 1Se_BiVO4(001) Systems.

Species H(water)—O(surface) (Å) Bi(surface)—O(water) (Å) Ead (kcal/mol) Band gap

BiVO4(001)@H2O 1.62 2.45 −38.28 1.74
Ov_BiVO4@H2O 1.75 2.51 −50.85 2.28
1Se_BiVO4@H2O 1.59 2.45 −40.24 1.35

Fig. 10. Band Structure and PDOS plot of BiVO4-001@H2O; the Fermi energy is set to zero.

Fig. 11. Band structure and PDOS of Ovac_BiVO4(001)@H2O; the Fermi energy is set to zero.

Fig. 12. Band structure and PDOS of 1Se_BiVO4(001)@H2O; the Fermi energy is set to zero.
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molecules is simulated with the help of Eq. (1), by subtracting the en-
ergies of the optimized water molecule and adsorbent bare slab (Eslab)
from the optimized water-slab complex (slab@water), using Eq. (1).

(1)

3.6. Pristine BiVO4(001)@H2O

In case of BiVO4(001)@H 2O, one of the water molecules is more at-
tracted towards the surface via O Bi and two H O bondings, having
distances of 2.45 and 1.62 Å, respectively (Table 2).

Hydrogen atoms of water molecules make a strong hydrogen bond-
ing with the surface O atoms of BiVO4(001), consequences the water
splitting ability of pristine BiVO4. The parent H O bond distances
(0.97 Å) and H O H angle (102°) of water molecule enlarged to 1 Å
and 110.41 °, respectively when H2O is adsorbed on the (001) surface of
BiVO4. The per-water molecular adsorption energy is −38.28 kcal/mol,
responsible for H2O splitting over (001) surface of BiVO4. Moreover, the
negative ΔEad value indicates an exothermic adsorption process.

The electronic band structure and PDOS plot of BiVO4(001)@H 2O
are given in Fig. 10, where the band gap of parent BiVO4(001) is re-
duced to 1.74 eV upon adsorption of water molecules. So, the bandgap
reduction of 0.48 eV confirm the water affinity of BiVO4 towards its
(001) surface. From the band structure and PDOS (Fig. 10) of
BiVO4(001)@H 2O system, it can be concluded that the VB orbital of wa-
ter molecules has strong hybridization with the VB of BiVO4(001). Com-
parative analysis of the data of Table 1 and Fig. 10, led us to conclude
that the water has moved the VB of pristine BiVO4(001) from −6.80 to
−5.96 eV and CB from −4.56 to −4.22 eV, at vacuum level. The indi-
vidual PDOS plots of Bi, V, O, and H2O is given in Fig. S19 of the Sup-
porting Information. In summary, the strong adsorption energy, pertur-
bation in both inter, and intra-bond distances of water and BiVO4(001),
confirmed and validate the already experimental photocatalytic ability
of BiVO4 [33,34].

3.7. Oxygen defective BiVO4(001)@H2O

As discussed earlier, the Oxygen defective BiVO4(001) has ideal band
edge positions (well above and below the redox potential of water) and
narrow band gap to be used as photocatalyst for water splitting. This
defective surface has strong attraction for water molecules as can be ob-
served from its adsorption energy (−50.85 kcal/mol). However, the in-
ter-bond distances of H O and Bi O are longer compared to that of
pristine@H2O system. The reason behind this is, the more electroposi-
tive nature of Ov_BiVO4(001) surface (especially O and Bi atoms), re-
sults weak hydrogen and electrostatic type of bondings (Table 2). In
Ov_BiVO4(001), the H O bond distances of water molecules elongate
to 0.99 Å, which result its further dissociation, as can be seen from Fig.
9b. The inter-bond distances such as the H O (H of water and O of
surface) are became enlarged which can be regarded to the cationic na-
ture of O defective surface of BiVO4(001).

Upon adsorption of water molecules on the Oxygen defective sur-
face, the band gap of the resulted specie increases from 1.96 to 2.28 eV,
as can be seen from Fig. 11 and Table 1 and 2. This 0.32 eV bandgap en-
largement is due to the shifting of CB, which is about 0.38 eV compared
to parent slab as can be seen from the PDOS of Ov_BiVO4(001). Con-
trast to BiVO4(001)@H 2O system, here water molecules has sufficiently
changed the energy of CB of Ov_BiVO4(001). The strong interaction of
water with the O defective surface can be analysed from its highest ad-
sorption energy (−50.85 kcal/mol) and orbital overlapping, especially
in the VB of Ov_BiVO4(001)@H 2O system (Fig. 11). The individual PDOS
plots of Bi, V, O, and H2O are given in Fig. S20 of the Supporting Infor-
mation.

3.8. 1% Se-Doped-BiVO4(001)@H2O

Finally, the water adsorption on the 1Se_BiVO 4(001) surface is in-
vestigated, where its optimized parameters are given in Table 2 and
electronic properties in Fig. 12 and S21. The simulated water adsorp-
tion energy (−40.24 kcal/mol) led us to conclude that 1% Se doped
BiVO4(001) can be easily used an efficient photocatalytic material. Fur-
thermore, the inter-Hydrogen bonding and electrostatic bond distances
are 1.59 and 2.45 Å, respectively, which confirm the enhanced catalytic
ability of Se doped BiVO4. Besides these geometric parameters, elec-
tronic properties of the resulting system are also effected, upon adsorp-
tion of water molecules. Both the VB and CB are slightly moved from its
parental position, which has decreased the overall band gap, from 1.39
to 1.35 eV as can be seen from Fig. 12 and Table 2.

In summary, although pristine BiVO4 is a good photocatalyst for wa-
ter splitting, having narrow bandgap and VB edge position, but inap-
propriate CB potential, reduces its hydrogen evaluation efficiency. This
comprehensive theoretical simulation predicts that both the Oxygen de-
fective and mild doped (1 or 2% Se) BiVO4 have not only changed the
band edges positions (well above and below the redox potential of wa-
ter) but reduced the bandgap as well, results a champion photocatalyst
for water splitting.

4. Conclusion

We have carried out a comprehensive periodic density functional
theory (DFT) simulations for the pristine, oxygen defective (Ov) and
Se-doped BiVO4(001), to improve its photocatalytic performance. BiVO4
is a stable, cheap, easily synthesizable, having appropriate band gap and
valance band (VB) edge position but less positive conduction band (CB)
edge position (vs vacuum). Our theoretical simulations of BiVO4(001)
surface has nicely reproduced the experimental data which has val-
idated and confirm the method used. Furthermore, it is found that
Ov (1%), and Se-doped (1–2%) BiVO4(001) have narrowed band gaps,
small effective masses of electrons and holes, and well above and below
CBM and VBM, respectively (in line with the redox potential of water).
Moreover, Se-doped BiVO4(001) behave as a p-type semiconductor, ca-
pable of H2 production from water reduction. Finally, the selected sur-
faces were interacted with water molecules, to check their water absorp-
tion energy. The water adsorption energies vary as Ov_BiVO4(001)@H 2O
> 1Se_BiVO 4(001)@H 2O > BiVO4(001)@H 2O. Although, Oxygen de-
fective (1% O vacancy) BiVO4(001) has narrow band gap (1.96 eV),
suitable redox potentials (VB −6.29 eV, CB −4.33 eV at vacuum level),
and high-water adsorption energy but thermodynamically less stable
compared to Se-doped BiVO4(001). So, we conclude and predict that
mild doped Se_BiVO4(001) is not only stable but can efficiently absorb
the visible part of sun light and split water into O2 and H2 without any
external biased.
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