12 research outputs found

    Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010

    Get PDF
    © Author(s) 2011. This work is distributed under the Creative Commons Attribution 3.0 LicenseAirborne lidar and in-situ measurements of aerosols and trace gases were performed in volcanic ash plumes over Europe between Southern Germany and Iceland with the Falcon aircraft during the eruption period of the Eyjafjalla1 volcano between 19 April and 18 May 2010. Flight planning and measurement analyses were supported by a refined Meteosat ash product and trajectory model analysis. The volcanic ash plume was observed with lidar directly over the volcano and up to a distance of 2700 km downwind, and up to 120 h plume ages. Aged ash layers were between a few 100 m to 3 km deep, occurred between 1 and 7 km altitude, and were typically 100 to 300 km wide. Particles collected by impactors had diameters up to 20 μm diameter, with size and age dependent composition. Ash mass concentrations were derived from optical particle spectrometers for a particle density of 2.6 g cm-3 and various values of the refractive index (RI, real part: 1.59; 3 values for the imaginary part: 0, 0.004 and 0.008). The mass concentrations, effective diameters and related optical properties were compared with ground-based lidar observations. Theoretical considerations of particle sedimentation constrain the particle diameters to those obtained for the lower RI values. The ash mass concentration results have an uncertainty of a factor of two. The maximum ash mass concentration encountered during the 17 flights with 34 ash plume penetrations was below 1 mg m-3. The Falcon flew in ash clouds up to about 0.8 mg m-3 for a few minutes and in an ash cloud with approximately 0.2 mg -3 mean-concentration for about one hour without engine damage. The ash plumes were rather dry and correlated with considerable CO and SO2 increases and O3 decreases. To first order, ash concentration and SO2 mixing ratio in the plumes decreased by a factor of two within less than a day. In fresh plumes, the SO2 and CO concentration increases were correlated with the ash mass concentration. The ash plumes were often visible slantwise as faint dark layers, even for concentrations below 0.1 mg m-3. The large abundance of volatile Aitken mode particles suggests previous nucleation of sulfuric acid droplets. The effective diameters range between 0.2 and 3 μm with considerable surface and volume contributions from the Aitken and coarse mode aerosol, respectively. The distal ash mass flux on 2 May was of the order of 500 (240-1600) kgs -1. The volcano induced about 10 (2.5-50) Tg of distal ash mass and about 3 (0.6-23) Tg of SO2 during the whole eruption period. The results of the Falcon flights were used to support the responsible agencies in their decisions concerning air traffic in the presence of volcanic ash.Peer reviewe

    Does Strong Tropospheric Forcing Cause Large-Amplitude Mesospheric Gravity Waves? A DEEPWAVE Case Study

    Get PDF
    On 4 July 2014, during the Deep Propagating Gravity Wave Experiment (DEEPWAVE), strong low-level horizontal winds of up to 35 m s−1 over the Southern Alps, New Zealand, caused the excitation of gravity waves having the largest vertical energy fluxes of the whole campaign (38 W m−2). At the same time, large-amplitude mesospheric gravity waves were detected by the Temperature Lidar for Middle Atmospheric Research (TELMA) located at Lauder (45.0°S, 169.7°E), New Zealand. The coincidence of these two events leads to the question of whether the mesospheric gravity waves were generated by the strong tropospheric forcing. To answer this, an extensive data set is analyzed, comprising TELMA, in situ aircraft measurements, radiosondes, wind lidar measurements aboard the DLR Falcon as well as Rayleigh lidar and advanced mesospheric temperature mapper measurements aboard the National Science Foundation/National Center for Atmospheric Research Gulfstream V. These measurements are further complemented by limited area simulations using a numerical weather prediction model. This unique data set confirms that strong tropospheric forcing can cause large-amplitude gravity waves in the mesosphere, and that three essential ingredients are required to achieve this: first, nearly linear propagation across the tropopause; second, leakage through the stratospheric wind minimum; and third, amplification in the polar night jet. Stationary gravity waves were detected in all atmospheric layers up to the mesosphere with horizontal wavelengths between 20 and 100 km. The complete coverage of our data set from troposphere to mesosphere proved to be valuable to identify the processes involved in deep gravity wave propagation

    A new airborne broadband radiometer system and an efficient method to correct dynamic thermal offsets

    Get PDF
    The instrumentation of the High Altitude and Long Range (HALO) research aircraft is extended by the new Broadband AirCrAft RaDiometer Instrumentation (BACARDI) to quantify the radiative energy budget. Two sets of pyranometers and pyrgeometers are mounted to measure upward and downward solar (0.3–3 µm) and thermal–infrared (3–100 µm) irradiances. The radiometers are installed in a passively ventilated fairing to reduce the effects of the dynamic environment, e.g., fast changes in altitude and temperature. The remaining thermal effects range up to 20 W m−2 for the pyranometers and 10 W m−2 for the pyrgeometers. Using data collected by BACARDI during a night flight, it is demonstrated that the dynamic components of the offsets can be parameterized by the rate of change of the radiometer sensor temperatures, providing a greatly simplifying correction of the dynamic thermal effects. The parameterization provides a linear correction function (200–500 W m−2 K−1 s) that depends on the radiometer type and the mounting position of the radiometer on HALO. Furthermore, BACARDI measurements from the EUREC4A (Elucidating the Role of Clouds—Circulation Coupling in Climate) field campaign are analyzed to characterize the performance of the radiometers and to evaluate all corrections applied in the data processing. Vertical profiles of irradiance measurements up to 10 km altitude show that the thermal offset correction limits the bias due to temperature changes to values below 10 W m−2. Measurements with BACARDI during horizontal, circular flight patterns in cloud-free conditions demonstrate that the common geometric attitude correction of the solar downward irradiance provides reliable measurements in this typical flight section of EUREC4A, even without active stabilization of the radiometer.</p

    Mountain waves modulate the water vapor distribution in the UTLS

    Get PDF
    The water vapor distribution in the upper troposphere–lower stratosphere (UTLS) region has a strong impact on the atmospheric radiation budget. Transport and mixing processes on different scales mainly determine the water vapor concentration in the UTLS. Here, we investigate the effect of mountain waves on the vertical transport and mixing of water vapor. For this purpose we analyze measurements of water vapor and meteorological parameters recorded by the DLR Falcon and NSF/NCAR Gulfstream V research aircraft taken during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) in New Zealand. By combining different methods, we develop a new approach to quantify location, direction and irreversibility of the water vapor transport during a strong mountain wave event on 4 July 2014. A large positive vertical water vapor flux is detected above the Southern Alps extending from the troposphere to the stratosphere in the altitude range between 7.7 and 13.0 km. Wavelet analysis for the 8.9 km altitude level shows that the enhanced upward water vapor transport above the mountains is caused by mountain waves with horizontal wavelengths between 22 and 60 km. A downward transport of water vapor with 22 km wavelength is observed in the lee-side of the mountain ridge. While it is a priori not clear whether the observed fluxes are irreversible, low Richardson numbers derived from dropsonde data indicate enhanced turbulence in the tropopause region related to the mountain wave event. Together with the analysis of the water vapor to ozone correlation, we find indications for vertical transport followed by irreversible mixing of water vapor. For our case study, we further estimate greater than 1 W m−2 radiative forcing by the increased water vapor concentrations in the UTLS above the Southern Alps of New Zealand, resulting from mountain waves relative to unperturbed conditions. Hence, mountain waves have a great potential to affect the water vapor distribution in the UTLS. Our regional study may motivate further investigations of the global effects of mountain waves on the UTLS water vapor distributions and its radiative effects

    Observed versus simulated mountain waves over Scandinavia &ndash; improvement of vertical winds, energy and momentum fluxes by enhanced model resolution?

    Get PDF
    Two mountain wave events, which occurred over northern Scandinavia in December 2013 are analysed by means of airborne observations and global and mesoscale numerical simulations with horizontal mesh sizes of 16, 7.2, 2.4 and 0.8 km. During both events westerly cross-mountain flow induced upward-propagating mountain waves with different wave characteristics due to differing atmospheric background conditions. While wave breaking occurred at altitudes between 25 and 30 km during the first event due to weak stratospheric winds, waves propagated to altitudes above 30 km and interfacial waves formed in the troposphere at a stratospheric intrusion layer during the second event. Global and mesoscale simulations with 16 and 7.2 km grid sizes were not able to simulate the amplitudes and wavelengths of the mountain waves correctly due to unresolved mountain peaks. In simulations with 2.4 and 0.8 km horizontal resolution, mountain waves with horizontal wavelengths larger than 15 km were resolved, but exhibited too small amplitudes and too high energy and momentum fluxes. Simulated fluxes could be reduced by either increasing the vertical model grid resolution or by enhancing turbulent diffusion in the model, which is comparable to an improved representation of small-scale nonlinear wave effects

    Richer, greener, and more thermophilous? - a first overview of global warming induced changes in the Italian alpine plant communities within the new GLORIA ITALIA NETWORK

    No full text
    We announce the formation of the "GLORIA ITALIA NETWORK" and present an overview of the Italian alpine plant communities changes that have occurred in the last 20 years. This network will provide coordination between Italian GLORIA sites and enhance public awareness of changes in alpine plant diversity under climate change

    Richer, greener, and more thermophilous?–a first overview of global warming induced changes in the Italian alpine plant communities within the new GLORIA ITALIA NETWORK

    No full text
    none28siWe announce the formation of the “GLORIA ITALIA NETWORK” and present an overview of the Italian alpine plant communities changes that have occurred in the last 20 years. This network will provide coordination between Italian GLORIA sites and enhance public awareness of changes in alpine plant diversity under climate change.nonePorro F.; Orsenigo S.; Abeli T.; Mondoni A.; Corli A.; White F.J.; Lodetti S.; Tomaselli M.; Petraglia A.; Carbognani M.; Gualmini M.; Forte T.G.W.; Erschbamer B.; Nicklas L.; Carnicero P.; Mallaun M.; Unterluggauer P.; Stanisci A.; Giancola C.; di Martino L.; Barni E.; Oddi L.; Morra di Cella U.; Gentili R.; Dellavedova R.; Adorni M.; Pauli H.; Rossi G.Porro, F.; Orsenigo, S.; Abeli, T.; Mondoni, A.; Corli, A.; White, F. J.; Lodetti, S.; Tomaselli, M.; Petraglia, A.; Carbognani, M.; Gualmini, M.; Forte, T. G. W.; Erschbamer, B.; Nicklas, L.; Carnicero, P.; Mallaun, M.; Unterluggauer, P.; Stanisci, A.; Giancola, C.; di Martino, L.; Barni, E.; Oddi, L.; Morra di Cella, U.; Gentili, R.; Dellavedova, R.; Adorni, M.; Pauli, H.; Rossi, G

    Visualizing intermolecular interactions in T cells

    No full text
    The use of appropriate fluorescent proteins has allowed the use of FRET microscopy for investigation of intermolecular interactions in living cells. This method has the advantage of both being dynamic and of working at the subcellular level, so that the time and place where proteins interact can be visualized. We have used FRET microscopy to analyze the interactions between the T cell antigen receptor and the coreceptors CD4 and CD8. This chapter reviews data on how these coreceptors are recruited to the immunological synapse, and how they interact when the T cell is stimulated by different ligands
    corecore