1,291 research outputs found

    Anticorrelation between Ion Acceleration and Nonlinear Coherent Structures from Laser-Underdense Plasma Interaction

    Get PDF
    In laser-plasma experiments, we observed that ion acceleration from the Coulomb explosion of the plasma channel bored by the laser, is prevented when multiple plasma instabilities such as filamentation and hosing, and nonlinear coherent structures (vortices/post-solitons) appear in the wake of an ultrashort laser pulse. The tailoring of the longitudinal plasma density ramp allows us to control the onset of these insabilities. We deduced that the laser pulse is depleted into these structures in our conditions, when a plasma at about 10% of the critical density exhibits a gradient on the order of 250 {\mu}m (gaussian fit), thus hindering the acceleration. A promising experimental setup with a long pulse is demonstrated enabling the excitation of an isolated coherent structure for polarimetric measurements and, in further perspectives, parametric studies of ion plasma acceleration efficiency.Comment: 4 pages, 5 figure

    Case-control survival analysis with a general semiparametric shared frailty model--a pseudo full likelihood approach

    Get PDF
    In this work we deal with correlated failure time (age at onset) data arising from population-based case-control studies, where case and control probands are selected by population-based sampling and an array of risk factor measures is collected for both cases and con- trols and their relatives. Parameters of interest are e®ects of risk factors on the failure time hazard function and within-family depen- dencies among failure times after adjusting for the risk factors. Due to the retrospective sampling scheme, large sample theory for existing methods has not been established. We develop a novel technique for estimating the parameters of interest under a general semiparamet- ric shared frailty model. We also present a simple, easily computed, and non-iterative nonparametric estimator for the cumulative base- line hazard function. We provide rigorous large sample theory for the proposed method. We also present simulation results and a real data example for illustrating the utility of the proposed method

    Short Intense Laser Pulse Collapse in Near-Critical Plasma

    Full text link
    It is observed that the interaction of an intense ultra-short laser pulse with an overdense gas jet results in the pulse collapse and the deposition of a significant part of energy in a small and well localized volume in the rising part of the gas jet, where the electrons are efficiently accelerated and heated. A collisionless plasma expansion over 150 microns at a sub-relativistic velocity (~c/3) has been optically monitored in time and space, and attributed to the quasistatic field ionization of the gas associated to the hot electron current. Numerical simulations in good agreement with the observations suggest the acceleration in the collapse region of relativistic electrons, along with the excitation of a sizeable magnetic dipole that sustains the electron current over several picoseconds. Perspectives of ion beam generation at high repetition rate directly from gas jets are discussed

    Angular momentum evolution in laser-plasma accelerators

    Get PDF
    The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extend in the phase space and the angular momentum which allows for non-planar electron trajectories. Whereas the emittance of electron beams produced in laser- plasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in laser-plasma accelerator carry some angular momentum, but its origin was not established. Here we identify one source of angular momentum growth and we present experimental results showing that the angular momentum content evolves during the acceleration

    Clinical Spectrum and Genetic Diagnosis of 54 Consecutive Patients Aged 0-25 with Bilateral Cataracts

    Get PDF
    Childhood cataract affects 2.5–3.5 per 10,000 children in the UK, with a genetic mutation identified in 50–90% of bilateral cases. However, cataracts can also manifest in adolescence and early adulthood in isolation, as part of a complex ocular phenotype or with systemic features making accurate diagnosis more challenging. We investigate our real-world experience through a retrospective review of consecutive bilateral cataract patients (0–25 years) presenting to the ocular genetics service at Moorfields Eye Hospital between 2017 and 2020. Fifty-four patients from 44 unrelated families were identified, with a median age of 13.5 years (range 1 to 68 years) and a median age at diagnosis of 43.9 months IQR (1.7–140.3 months); 40.7% were female and 46.3% were Caucasian. Overall, 37 patients from 27 families (61.4%) were genetically solved (50%) or likely solved (additional 11.4%), with 26 disease-causing variants (8 were novel) in 21 genes; the most common were crystallin genes, in 8 (29.6%) families, with half occurring in the CRYBB2 gene. There was no significant difference in the molecular diagnostic rates between sporadic and familial inheritance (P = 0.287). Associated clinical diagnoses were retinal dystrophies in five (18.5%) and aniridia in three (11.1%) families. Bilateral cataracts were the presenting feature in 27.3% (6/22) of either complex or syndromic cases, and isolated cataract patients were 11.5 years younger (rank-sum Z = 3.668, P = 0.0002). Prompt genetic investigation with comprehensive panel testing can aid with diagnosis and optimise management of cataract patient
    • …
    corecore