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Summary

Many regression analyses involve explanatory variables that are measured with error, and

failing to account for this error is well known to lead to biased estimates of the regression

coefficients. We present here a new general method for adjusting for covariate error. Our

method consists of an approximate version of the Stefanski-Nakamura corrected score

approach, using the method of regularization for approximate solution of integral equa-

tions. We develop the theory in the setting of classical likelihood models, covering linear

regression, nonlinear regression, logistic regression, and Poisson regression. The method

is extremely general in terms of the types of measurement error models covered, and is

a functional method in the sense of not requiring information on the distribution of the

true covariate. We discuss the theoretical properties of the method and present simulation

results in the logistic regression setting (univariate and multivariate). For illustration, we

apply the method to data from the Harvard Nurses’ Health Study concerning the relation-

ship between physical activity and breast cancer death among patients with diagnosed

breast cancer.

Key words: Errors in variables, nonlinear models, logistic regression, integral equations
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1. Introduction

Many regression analyses involve explanatory variables that are measured with error.

It is well known that failing to account for the covariate error can lead to biased estimates

of the regression coefficients, and there is a large literature on correcting for covariate

measurement error. Fuller (1987) provides an authoritative treatment for linear models.

For nonlinear models, work on the covariate error problem began in the early 1980’s.

Carroll et al. (2006) summarizes the major developments in the area. Currently the

covariate error problem for nonlinear models continues to be an active research area,

bearing on such common statistical models as nonlinear regression with a continuous

response, logistic regression for binary responses, Poisson regression for count data, and

the Cox proportional hazards regression for survival data. This paper presents a flexible

new method for nonlinear regression problems with covariate error, built on earlier work.

Three basic study designs are of interest: (1) the replicate measures design, where

repeat covariate measurements are available (either for all individuals or for a subsam-

ple), (2) the internal validation design, where the true covariate values are available on

a sample of individuals in the main study, and (3) the external validation design, where

the key parameters of the measurement error distribution are estimated (assuming rea-

sonable transportability) from an external study, independent of the main study, with

paired measurements of the true and surrogate covariate. Also, two types of methods are

of interest: structural methods, which make use of a distributional model for the true

covariates, and functional methods, which do not make use of such a model.

A wide variety of approaches have appeared in the literature. We focus here on

the SIMEX and corrected score approaches, bothe of which are functional modeling ap-

proaches. These are general approaches that can handle both internal and external val-

idation designs as well as, with slight adaptation, the replicate measures design. Our

proposed method is based on the corrected score approach.

The SIMEX method of Cook and Stefanski (1995) involves simulating new covariate
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values with various levels of artificially added measurement error, carrying out a naive

model fit for each of the resulting new data sets, and then back-extrapolating to zero

measurement error. While some success has been achieved with this approach, obvi-

ously the back-extrapolation process is uncertain. Moreover, the SIMEX approach can

be difficult to apply in certain non-classical settings. One challenging setting is when the

measurement error variance depends on the true covariate value. A version of SIMEX

that can handle this setting under the replicate measures design has been described by

Devanarayan and Stefanski (2002), but it does not appear that SIMEX can handle this

setting under internal or external validation study designs.

The corrected score approach, advanced by Stefanski (1989) and Nakamura (1990,

1992), involves replacing the likelihood score in the conventional likelihood-based analysis

with a function of the surrogate covariates that serves as an “unbiased” substitute. In

Section 2, we present the exact definition. For the independent additive error model,

Nakamura (1990) showed that this approach works for normal linear regression, Pois-

son regression, Gamma regression, and inverse Gaussian regression. Nakamura (1992)

presented an approximate corrected score method for the Cox regression model, which

Kong and Gu (1999) later showed to yield consistent estimates. Novick and Stefanski

(2002) presented a corrected score method that is aimed at the independent additive er-

ror model with normal errors, and is valid when the likelihood score function is an entire

function in the complex plane. Stefanski, Novick, and Devanarayan (2005) elaborate on

this approach. When the error-prone covariate is discrete, a corrected score can be formu-

lated easily; the relevant theory was developed for generalized linear models by Akazawa,

Kinukawa, and Nakamura (1998), and extended to the Cox regression model by Zucker

and Spiegelman (2008).

On the other hand, for logistic regression with additive normal error, Stefanski (1989)

showed that an exact corrected score method does not exist. Huang and Wang (2001)

presented an exact modified corrected score method for logistic regression, in which the
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terms in the original score function are cleverly reweighted in such a way that an exact

corrected score for the modified score function can be found. This reweighting leads to

some loss in efficiency. Moreover, the method of Huang and Wang is designed only for the

case of independent additive measurement error. Buzas (2009) presents an approximate

corrected score method for the logistic regression model with high efficiency when the

covariate effect is moderate, but this method is designed only for the case of independent

additive normal error.

The basic problem with the corrected score approach in the logistic regression model

and other cases with a continuous error-prone covariate X is that obtaining the corrected

score requires solving a challenging integral equation. The equation involved falls into the

class of Fredholm integral equations of the first kind, which are discussed by Delves and

Mohamed (1985, Ch. 12) and Kress (1989, Ch. 16). Such equations do not always have an

exact solution; the logistic regression problem is one case of this. Moreover, even when an

exact solution exists, the problem can be ill-conditioned. We attempted to tackle the case

of a continuous covariate by discretizing the covariate to various degrees of fineness and

applying the methodology for the discrete case. This attempt, however, met with only

limited success. We had promising results under the classical normal error model, but in

more general cases we ran into difficulties. A major problem was that the classification

matrix tended to be ill-conditioned even with a modest degree of fineness, such as six

categories.

In this paper, we develop a new approach. The idea is to handle the integral equation

using the method of regularization (Delves and Mohamed, 1985, Sec. 12.3; Kress, 1989,

Ch. 16), which involves minimizing a penalized distance function to obtain an approximate

solution. In contrast with the original integral equation problem, the regularized problem

always has a solution, and is reasonably well conditioned provided that the weight α

on the penalty term is not too small. As α tends to infinity, the estimation procedure

tends to a naive analysis in which we ignore the covariate error, and simply substitute
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the surrogate covariate value for the true value. Conversely, under suitable conditions, as

α tends to zero the procedure approaches an exact corrected score procedure. The idea

is to push α as close as possible to zero to get good estimates of the model parameters.

We call our approach the regularized corrected score (RECS) approach.

The advantage of RECS is that it is extremely flexible. Its formulation is very gen-

eral, and it is a functional method in that it does not involve the distribution of the true

covariate, but only the conditional density of the surrogate covariate given the true covari-

ate. The method can handle both internal and external validation designs. It can handle

the replicate measures design as well, with the overall surrogate measurement defined as

the sample mean (or other summary measure) of the available measurements on the in-

dividual. Moreover, the method can handle measurement error structures of an arbitrary

nature, not just independent additive measurement error. Differential measurement error,

where the measurement error depends on the response, is also covered.

The technique of regularization is an established one which has been used in various

statistical applications, for example nonparametric regression based on spline smoothing

(Wahba, 1990). Recently, Carrasco and Florens (2011) have used the technique in a

measurement error context, to attack the problem of deconvolving a density. However,

our use of regularization in the corrected score context is novel.

The goal of this paper is to develop the RECS method in detail for the classical

likelihood setting. Section 2 lays out the setting and background. Section 3 presents

the proposed procedure and its theoretical properties. Section 4 presents simulation re-

sults under the logistic regression model. Section 5 presents a real-data illustration of

the method in the logistic regression setting. Section 6 presents a brief summary and

discussion.

2. Setting and Background

We assume a typical setup with n independent units whose response values Yi, i = 1, . . . n,
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follow a regression model involving several covariates. We assume for now that only one of

the covariates is subject to error; later we will generalize to the case of multiple error-prone

covariates. We denote by Xi the true value of the error-prone covariate, and by Wi the

measured value. We let Zi denote the vector of error-free covariates, which may include

an arbitrary number of discrete and continuous components. We denote the conditional

density or mass function of Yi given (Xi,Zi) by f(y|Xi,Zi,θ), where θ is a p-vector

of unknown parameters, including regression coefficients and auxiliary parameters such

as error variances. In contrast with the SIMEX method, the Huang and Wang (2001)

method, and most other methods in the literature, we provide the option of allowing

measurement error to depend on Xi, Zi, and the outcome Yi (differential error). We denote

by ai(x,w) the conditional density of Wi given Xi = x, with the subscript i signifying

possible dependence on Zi and Yi. To ease the presentation of the theoretical results,

we assume that (Xi,Zi) are i.i.d. random vectors. We stress, however, that our method

does not involve any modeling (either parametric or nonparametric) of the distribution of

(Xi,Zi). The theoretical results can, in principle, be extended to the case where (Xi,Zi)

are non-random values satisfying suitable ergodicity conditions.

Define u(y, x, z,θ) = [∂/∂θ] log f(y|x, z,θ) and ui(x,θ) = u(Yi, x,Zi,θ). The classical

normalized likelihood score function when there is no covariate error is then given by

U(θ) = n−1
∑

i ui(Xi,θ), and the maximum likelihood estimate (MLE) is obtained by

solving the equation U(θ) = 0.

The idea of the Stefanski-Nakamura corrected score approach is to find a function ū(y, w, z,θ)

such that

E[ū(Yi,Wi,Zi,θ)|Xi,Zi, Yi] = u(Yi, Xi,Zi,θ). (1)

We put ūi(w,θ) = ū(Yi, w,Zi,θ), and then use the modified likelihood score function

Ū(θ) = n−1
∑

i ūi(Wi,θ) in place of U(θ) as the basis for estimation. The estimation

equation thus becomes Ū(θ) = 0.

5
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In the present setting, the equation (1) for the corrected score function takes the form

∫
ai(x,w)ūij(w)dw = uij(x), (2)

where uij(x) and ūij(w), respectively, denote the j-th component of ui(x,θ) and ūi(w,θ)

(suppressing the argument θ in the definitions), and the integral is over the entire range

of W . As indicated in the introduction, we do not seek an exact solution to (2), but

instead use the method of regularization to find an approximate solution.

Define the integral operator

Aig(x) =

∫
ai(x,w)g(w)dw.

Write ∆ij(x) = uij(x)−Aiuij(x) and ∆̄ij(w) = ūij(w)− uij(w). We can then write (2) as

Ai∆̄ij = ∆ij. We seek the ∆̄ij(·,θ, α) that minimizes the penalized loss function

Lij(∆̄ij) = ‖Ai∆̄ij −∆ij‖2 + α‖∆̄ij‖2, (3)

where ‖g‖2 denotes the weighted squared L2 norm ‖g‖2 =
∫
c(v)g(v)2dv and α > 0 is a

penalty factor. After obtaining ∆̄ij(·,θ, α), we use ūij(w,θ, α) = uij(w) + ∆̄ij(w,θ, α) as

a corrected score term.

For the weight function c(v), we propose as a generic choice the standard normal density,

i.e., c(v) = ϕ(v) with ϕ(v) = exp(−v2/2)/
√

2π, after standardizing W to mean 0 and

variance 1. The weight function is designed to put emphasis on the region of the covariate

space where the bulk of the data lie. One could consider the possibility of tailoring the

choice of the weight function to the pattern of the observed distribution of W , but we do

not discuss this here.

We formulate the minimization problem in terms of ∆̄ij(·,θ, α) rather than ūij(·,θ, α) in

order to anchor the procedure at uij(w), which corresponds to the naive analysis in which
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we ignore the covariate error, and simply substitute Wi for Xi. See Hansen (1994, Sec. 2,

second paragraph) for the idea of centering the regularization process around an initial

estimate of the desired solution to the integral equation. As α → ∞, the loss function

Lij(∆̄ij) puts increasingly heavy weight on ‖∆̄ij‖2, which causes the minimizer ∆̄ij to

tend to the zero function, leading to the naive estimates based on uij(w). At the other

extreme, as α→ 0, the problem of minimizing Lij(∆̄ij) approaches the problem of solving

A∆̄ij = ∆ij. In presenting our method, we first describe the procedure for a fixed α, and

then discuss the selection of the value of α.

By working with the L2 norm, we ensure that the problem of minimizing the loss function

always has a unique solution, and the solution has a mathematically convenient form.

Delves and Mohamed (1985, Sec. 12.3) and Kress (1989, Theorem 16.1) present the rele-

vant theory. Let

A∗ih(w) =

∫
ai(x,w)h(x)dx

denote the adjoint operator corresponding to the operator Ai. Then, for any L2 function

δ, the minimizer of L(δ̄;Ai, δ, α) = ‖Aiδ̄ − δ‖+ α‖δ̄‖2 is given by

δ̄ = (A∗iAi + αI)−1A∗i δ, (4)

where I is the identity operator.

In the next section, we present a numerical scheme for finding the solution that leads to a

simple linear system of equations. We thus obtain a procedure that is easily implemented.

3. The Procedure

3.1. The Procedure for a Given α

To numerically determine the minimizer of Lij(∆̄ij), we use a Galerkin-type basis

expansion approach, in the spirit of (though not identical to) Delves and Mohamed (1985,

7
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Sec. 12.4). Specifically, we represent the solution ∆̄ij(·,θ, α) in a basis expansion of the

form

∆̄ij(x,θ, α) =
M∑
m=1

dijm(α)ψm(x), (5)

where the ψm are specified basis functions. In our numerical work, we use the “proba-

bilists’” Hermite polynomials, which are orthonormal with respect to the weight function

ϕ. One has to choose the number M of basis functions to include. We found that M = 6

yields good performance; the results with M = 4 are inferior to those with M = 6, while

the results with M = 10 are similar to those with M = 6 but with more outliers.

Denote φim(x) = Aiψm(x) and dij = [dij1 . . . dijM ]T (suppressing the argument α in

dijm for the time being). We then can express the objective function Lij(∆̄ij) as

Lij(∆̄ij) = ‖
M∑
m=1

dijmφim −∆ij‖2 + αdTijdij,

where ‖∆̄ij‖2 = dTijdij because of the orthonormality of the ψm functions. We now approx-

imate the L2 norm in the first term on the right side via the quadrature approximation

∫
φ(v)g(v)dv

.
=

K∑
k=1

qkg(xk), (6)

where xk and qk are the classical Gauss-Hermite quadrature points and weights (modified

slightly to account for our use of the weight function exp(−v2/2)/
√

2π as opposed to

the standard Hermite weight function exp(−v2)). Given the approximation (6), we can

express the objective function as

Lij(∆̄ij) =
K∑
k=1

qk

[
M∑
m=1

dijmφim(xk)−∆ij(xk)

]2

+ αdTijdij

=
K∑
k=1

[
M∑
m=1

dijmφ̃im(xk)− ∆̃ij(xk)

]2

+ αdTijdij,

where φ̃im(x) =
√
qkφm(xk) and ∆̃ij(x) =

√
qk∆ij(x). Next, define the matrix Φ̃i by

8
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Φ̃ikm = φ̃im(xk) and the vector ∆̃ij = [∆̃ij(x1) . . . ∆̃ij(xK)]. We obtain Lij(∆̄ij) =

(Φ̃idij − ∆̃ij)
T (Φ̃idij − ∆̃ij) + αdTijdij. We then find, by standard least squares theory,

that the vector dij(α) that minimizes the above quantity is given by dij(α) = C(α)∆̃ij,

where C(α) = (Φ̃
T
Φ̃ + αI)−1. Note that C(α) does not depend on θ. Finally, we

define ūij(w,θ, α) = uij(w,θ) + ∆̄ij(w,θ, α), where ∆̄ij(w,θ, α) is given by (5) with

dijm(α) obtained as just described. Then, as indicated in the preceding section, we

put Ū(θ, α) = n−1
∑

i ūi(Wi,θ, α) and define the estimator θ̂(α) to be the solution to

Ū(θ, α) = 0.

In the course of the foregoing procedure, we have to evaluate integrals of the form

E[g(Wi)|Xi = x] = Aig(x) =

∫
ai(x,w)g(w)dw. (7)

Integrals of this type appear in φim(x) = Aiψm(x) and in ∆ij(x) = uij(x)−Aiuij(x). These

integrals can be evaluated by K ′-point numerical quadrature for suitable K ′. Appendix

1 presents the details.

In regard to the choice of K and K ′, in our numerical work we generally used K =

K ′ = 20; we reran selected simulations with K = K ′ = 30 and obtained similar results.

In a data analysis, the analyst can try a succession of increasing values of K and K ′, and

stop when there is no further change in the results.

In practice, ai(x,w) has to be estimated, using data from a replicate measures study

or an internal or external validation study. We assume that ai(x,w) follows a known

parametric model depending on parameters ξ (distinct from θ) which are estimated from

the relevant data. Accordingly, we write ai(x,w, ξ). The parametric model is allowed,

however, to be of any specified form. Thus, in addition to the classical independent

additive error model, we allow for models with dependence between the error and the true

covariate value, and models with differential error. Moreover, in our numerical studies,

9
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we have examined the effect of misspecifying the parametric form.

3.2. Theoretical Properties

In general, θ̂(α) will not converge to the true value θ0 of θ, but rather to a limiting

value θ̃(α) that is close to θ0 when α is small. In practice, we cannot make α arbitrarily

small, but we can try to make it small enough to obtain estimates whose bias is small, and

the numerical studies presented in the next section indicate that this goal can be achieved.

Thus, our method does not produce an exactly consistent estimator, but it does produce

an approximately consistent estimator. Moreover, under standard regularity conditions,

√
n(θ̂ − θ̃(α)) is asymptotically normal. The foregoing properties are formalized in the

following theorem, which is proved in Appendix 2.

Theorem: Assume the following regularity conditions.

A1. The parameter space Θ is compact with a nonempty interior which includes the

true value θ0.

A2. The function ui(x,θ) is continuously differentiable in θ over Θ for every x, with

derivative that is bounded over x by an L2 function of x.

A3. The matrix DE(θ) defined by (DE)rs(θ) = −E[(∂2/∂θr∂θs) log f(Y |X,Z,θ)] is

positive definite over Θ.

A4. The null space N (A∗i ) consists only of the zero function, i.e., the only solution

to A∗ih = 0 is h = 0.

Define ūE(θ, α) = E[ūi(Wi,θ, α)]. Let D̄(α)(θ) denote −1 times the Jacobian matrix of

Ū(θ, α). The following results then hold.

a. We have

E[ūij(Wi,θ, α)|Xi,Zi, Yi] = uij(Xi,θ) + rij(Xi,θ, α)
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with limα→0 supθ ‖rij(·,θ, α)‖ = 0.

b. Similarly, with uijs(x,θ) = [∂/∂θs]uij(x,θ) and ūijs(w,θ, α) = [∂/∂θs]ūijs(w,θ, α),

we have

E[ūijs(Wi,θ, α)|Xi,Zi, Yi] = uijs(Xi,θ) + rijs(Xi,θ, α)

with limα→0 supθ ‖rijs(·,θ, α)‖ = 0.

c. For all α sufficiently small, the equation ūE(θ, α) = 0 has a unique solution, which

we denote by θ̃(α).

d. For fixed α, we have θ̂(α) → θ̃(α) almost surely as n→∞.

e. We have θ̃(α) → θ0 as α→ 0.

f. If ai(x,w) is known,
√
n(θ̂(α) − θ̃(α)) is asymptotically mean-zero normal with

covariance matrix that can be estimated using the sandwich estimator

V(α)(θ̂(α)) = D̄(α)(θ̂(α))−1F(α)(θ̂(α))D̄(α)(θ̂(α))−1, (8)

with

F(α)(θ) =
1

n

n∑
i=1

ūi(θ, α)ūi(θ, α)T . (9)

Under a parametric model for ai(x,w) with estimated parameters ξ, a similar result

holds, with a suitable adjustment to the estimated covariance matrix to account for the

estimation of ξ, as described in Appendix 3.

Remark 1 : The expectation in the definition of ūE(θ, α) is an unconditional ex-

pectation over all random variables in the model. In Result (f), the covariance is an

unconditional covariance matrix, paralleling that in Nakamura’s (1990) Eqn. 2.

Remark 2 : It is natural to ask about the rate of convergence of θ̃(α) to θ0. This

convergence rate depends on the rate of convergence of ‖Ai∆̄ij −∆ij‖ to zero as α tends

11
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to zero. The discussion in Delves and Mohamed (1985, pp. 308-309) indicates that the

latter convergence rate depends on the rate of decay in the Fourier coefficients of ∆ij

with respect to a basis defined by the eigenfunctions of the operator Ai. In our setting,

this rate of decay is hard to characterize, making precise convergence rate results hard to

obtain.

Remark 3 : Assumptions A1-A3 are typical assumptions made in asymptotic theory;

see, for example, van der Vaart (1998, p. 46, bottom). Assumption A4 is a modest

assumption that holds in many cases of interest. For example, suppose (X,W ) follows the

independent additive error model W = X+σε, where ε is a random variable with density

fε, independent of X. We then have a(x,w) = σ−1fε((w − x)/σ) = σ−1f̃ε((x − w)/σ),

with f̃ε(u) = fε(−u). The assumption thus will be satisfied provided that the location-

scale family of densities f(x;w, σ) = σ−1f̃ε((x − w)/σ) is a complete family of densities

with respect to the parameters (w, σ). This condition certainly holds if fε is a density of

exponential family form; see Lehmann (1986, p. 142). Next, consider the extended model

W = X + σ(X,γ)ε, which we examine in our numerical studies, where γ is a vector of

parameters. Assumption A4 will hold in this setting if the family of densities

f(x;w,γ) =
1

σ(x,γ)
f̃ε

(
x− w
σ(x,γ)

)/∫
1

σ(x′,γ)
f̃ε

(
x′ − w
σ(x′,γ)

)
dx′

is a complete family of densities with respect to the parameters (w,γ). Again, this

condition will hold if fε is a density of exponential family form.

3.3. Choice of the Penalty Parameter Function α

The issue of how to choose the penalty parameter in a regularization problem has been

investigated in previous literature. Hansen (1994, 2007) describes three leading criteria:

the L-curve criterion, the GCV criterion, and the quasi-optimality criterion. We tried all

three, and found the GCV criterion to be the most satisfactory. The GCV criterion is
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defined as

GCV(α) =
(Φ̃idij(α)− ∆̃ij)

T (Φ̃idij(α)− ∆̃ij)

[trace(I−C(α))]2
,

and α is chosen to minimize the value of this quantity. In our setting, we have a separate

value GCVij(α) for each i and j. We work with the summary criterion

GCV∗(α) =
1

np

n∑
i=1

p∑
j=1

GCVij(α),

and choose α to minimize this quantity. In implementing this rule, we evaluate ∆̃ij at

the naive estimate of θ, and then keep α fixed at the resulting value for the remainder of

the estimation process.

3.5. Multiple Error-Prone Covariates

The method can be readily extended to the case of two error-prone covariates X1 and

X2. For the basis functions, we use the tensor product of the univariate basis functions.

The integrals involved in quantities of the form Aig(x) become double integrals, which are

evaluated by bivariate quadrature. In the L2 norm appearing in the objective function,

we take the weight function to be c(w1, w2) = ϕ(w1)ϕ(w2), and evaluate the integral using

the bivariate version of (6).

In the case of three or more error-prone covariates, the situation becomes more com-

plicated. Taking the basis function set to be the tensor product of the univariate basis

functions will typically produce too large a basis function set, so some reduction will be

necessary. One could, for example, take the basis function set to include all the univariate

basis functions for the individual covariates plus the cross-products of the linear terms.

In the evaluation of the integrals Aig(x) = E[g(Wi)|Xi = x], a Monte-Carlo procedure

will probably be more workable than a classical quadrature procedure. The L2 norms

can be computed using a multivariate version of (6), but the computational load may be

demanding.

The simulation work presented in the next section includes results for the case of two

13

Hosted by The Berkeley Electronic Press



error-prone covariates. We have not attempted a numerical study of the case of three

error-prone covariates. On a practical level, it appears that it would be challenging to

apply our method in the setting of three or more error-prone covariates. However, many

applications involve only one or two error-prone covariates, and thus can be handled by

our method in a reasonable way. An arbitrary number of error-free covariates can be

handled without difficulty.

4. The Logistic Regression Model: Simulation Studies

4.1. Simulation Study Designs

To investigate the finite sample performance of our method, we conducted a series

of simulation studies. This subsection describes the simulation study designs; the next

subsection describes the results. The studies were conducted in the setting of the logistic

regression model. The response variable Yi equals either 0 or 1. Defining Ti = (Xi,Zi)

and Ti0 ≡ 1, the model is

logit Pr(Yi = 1|Xi = x,Z = z) =

p∑
j=0

βjtj

and the likelihood score function u(y, x, z,θ) is given by

uj(y, x, z,θ) = tj

[
y − expit

(
p∑
j=0

βjtj

)]
,

with expit(a) = ea/(1 + ea).

In the simulations we examined the following methods:

1. Naive analysis ignoring measurement error

2. RECS

3. The Novick and Stefanski (2001) complex variable corrected score method (N&S)

4. SIMEX, with linear, quadratic, and nonlinear extrapolation

5. The Huang and Wang (2001) nonparametric corrected score method (H&W)
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In the simulations on the Huang and Wang method, which requires replicate mea-

surements of W , we took two replicates per individual and doubled the error variance for

comparability with the other methods. Note that H&W is designed to provide accurate

estimates only for the slope parameter, not for the the intercept parameter. All simulation

results are based on 1,000 simulation replications.

The SIMEX method is designed for independent additive normal measurement error.

The N&S method is designed for the case where the measurement error is independent

additive normal and the likelihood score function is an entire function in the complex

plane. The latter condition does not hold for logistic regression, and thus the N&S

method is not designed to handle any of the simulation scenarios we have studied. The

H&W nonparametric method is designed for independent additive measurement error

with an arbitrary distribution, which is not modeled in any way. The RECS method

is designed for parametric measurement error models of arbitrary form, including non-

normal, heteroscedastic, and differential error.

For each estimator considered, we summarize the bias in terms of the mean and me-

dian of the difference between the estimated and true parameter values, and the dispersion

in terms of the empirical standard deviation and standardized interquartile range (divid-

ing the raw interquartile range by 1.349, which is the ratio between the interquartile range

and the standard deviation for a normal distribution). The median and the interquartile

distance are more robust to outliers, and therefore provide further insight in addition to

that provided by the mean and the standard deviation. In addition, for the naive estima-

tor and the RECS estimator, we present the coverage rates of the 95% Wald confidence

interval based on the asymptotic normal theory with the relevant variance estimators.

In Simulation Sets A and B, we considered the case of a single continuous error-

prone covariate Xi and no other covariates. In these two simulation sets, we worked in

the setting of a main study / external validation study design, involving a main study

sample with data on W and Y and an external validation sample with data on W and
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X. The main study sample size was 200 and the external validation sample size was 70.

The measurement error parameters were estimated by maximum likelihood. The RECS

method was implemented with M = 6 basis functions and K = K ′ = 20 quadrature

points. The true values of the regression parameters were set at β0 = β1 = 1.

Simulation Set A involved measurement error models of the form Wi = Xi+εi, where

εi is normally distributed, but with error variance possibly depending on Xi and Yi. We

examined three simulation scenarios, as follows:

Scenario A1: Xi ∼ N(0, 1), εi|(Xi, Yi) ∼ N(0, γ)

Scenario A2: Xi ∼ N(0, 1), εi|(Xi, Yi) ∼ N(0, γ1 + γ2|Xi|)

Scenario A3: Xi ∼ N(0, 1), εi|(Xi, Yi) ∼ N(0, γ1 + γ2|Xi|+ γ3|Yi|)

For each of the above scenarios, we examined two sets of measurement error param-

eters. In Scenario A1, we took γ = 0.5 or 1. In Scenarios A2 and A3, the two sets of

measurement error parameters were chosen such that the unconditional variance of εi was

approximately equal to 0.5 or 1, respectively.

Scenario A1 is the classical additive error model, which is theoretically covered by

RECS, SIMEX, and H&W (for N&S, the measurement error model assumption is sat-

isfied but the entire function condition is not satisfied). Scenarios A2 and A3 involve

heteroscedastic error models that are theoretically covered only by RECS.

Simulation Set B involved measurement error models of the form Wi = Xi + εi, with

non-normal εi. We considered two distributions for εi, the double-exponential distribu-

tion (DBLEXP(γ), with γ denoting the variance) and a modified chi-square distribution

MODCHI which Huang and Wang (2001) used in their simulation work. Specifically, the

MODCHI(γ) is defined to be the distribution of a χ2
1 variate truncated at the value 5,

recentered to mean zero, and then rescaled to a variance of γ. In Scenario B3, we also

take X to have a MODCHI distribution. The DBLEXP distribution is similar to the
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normal, but with heavier tails. The MODCHI distribution is highly skewed. The specific

scenarios examined were as follows:

Scenario B1: Xi ∼ N(0, 1), εi|(Xi, Yi) ∼ DBLEXP(γ)

Scenario B2: Xi ∼ N(0, 1), εi|(Xi, Yi) ∼ MODCHI(γ)

Scenario B3: Xi ∼ MODCHI(1), εi|(Xi, Yi) ∼ MODCHI(γ)

These scenarios are theoretically covered by RECS and H&W, but not by SIMEX or

N&S.

For each of these scenarios, we ran simulations for γ = 0.5 and γ = 1. For the MOD-

CHI distribution, integrals of the form Aig(x) were evaluated using the representation

Aig(x) =
2

Pr(χ2
1 ≤ 5)

∫ √5

0

ϕ(v)g

(
x+ γ

[
v2 − µMC

σMC

])
dv

in conjunction with Gauss-Hermite quadrature, where µMC and σMC denote, respectively,

the mean of the chi-square distribution truncated at 5.

Note that the MODCHI(γ) is an non-regular distributional family: it has support

that depends on γ. As a result, classical asymptotic theory for MLE’s does not apply to

the MLE of γ, but, at the same time, because of the restricted range of γ values that are

compatible with a given dataset due to the definition of the support, with an external

validation sample of 70 the value of γ is estimated with virtually no error.

Simulation Set C examined, in the setting of Simulation Sets A and B, the effect

of misspecifying the error distribution. We generated the errors according to one of two

possible non-normal distributions, but implemented our method assuming the errors are

normal. The non-normal error distributions used were the MODCHI(γ) distribution and

a modified version of Azzalini’s (1985) skewed normal distribution. Azzalini’s skewed

normal distribution SN(λ) has density 2φ(y)Φ(λy), y ∈ R, where φ and Φ denote the
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standard normal density and distribution function, respectively, and λ is a parameter that

regulates the skewness (λ = 0 gives the standard normal). Our modified version recenters

to mean zero and then rescales to the specified variance. We took Wi = Xi + εi, with

Xi taken to be either N(0, 1), SN(50), or MODCHI, and the distribution of εi taken to

be either the MODCHI(γ) or the the modified SN(λ) with λ = 50. The skewness of the

SN(50) distribution is 1, and that of the MODCHI is 1.7.

Simulation Set D considered the case of two error-prone covariates X1, X2 and one

error-free covariate Z. For this simulation set, we took the sample size to be 500, and

we took the measurement error parameters as known. For the RECS method, the basis

function set was taken to be the tensor product of the univariate basis functions sets with

M = 6, and in the quadrature calculations we took K ′ = 20 and K = 10. The true

regression coefficients were taken to be β0 = β1 = β2 = β3 = 1. The scenarios examined

were as follows.

Scenario D1: X1, X2, Z i.i.d. N(0, 1), ε1; ε2 i.i.d. N(0, γ), independent of X1, X2, Z

Scenario D2: X1, X2, Z i.i.d. N(0, 1), ε1; ε2 conditionally independent given X1, X2, Z and

distributed as N(0, γ1 + γ2(|X1|+ |X2|+ |Z|))

Scenario D3: X1, X2 ∼ MODCHI(1); Z ∼ N(0, 1); ε1, ε2 ∼ MODCHI(γ), all random

variables independent of each other

In Scenarios D1 and D3, we took γ = 1, while in Scenario D2 we took γ1 = 0.4 and

γ2 = 0.25, so that the unconditional variance of ε1 and ε2 was about 1. Scenario S1 is the

classical additive error model, which is theoretically covered by RECS, SIMEX, and H&W

(for N&S, the measurement error model assumption is satisfied but the entire function

condition is not satisfied). Scenario A2 involves a heteroscedastic error model that is

theoretically covered only by RECS. Scenario A3 involves a non-normal error model that

is theoretically covered by RECS and H&W, but not SIMEX and N&S.

The R code for the simulations is posted on the first author’s website, as follows:
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R code for Simulation Studies A, B, and C

http://pluto.huji.ac.il/˜mszucker/recs-siml-univ.zip

R code for Simulation Study D

http://pluto.huji.ac.il/˜mszucker/recs-siml-multiv.zip

4.2. Simulation Results

Tables 1, 2, and 3, present, respectively, the results of Simulation Studies A, B, and

C, while Table 4-6 present results of Simulation Study D. Here we discuss the findings,

focusing on estimation of the slope parameter. Overall, the RECS method performs very

well in terms of bias and confidence interval coverage. Below we discuss how RECS

compares with the competing methods.

We begin with the Simulation Study A, the setting of normal measurement error with

possible heteroscedasticity. RECS showed low bias throughout, especially when we look

at the median of the estimates. N&S also generally showed low bias, although the bias

was greater than that of RECS in a number of cases. SIMEX-NL also showed low bias in

most cases (the last panel of Table 1 being a notable exception), but estimation procedure

was unsuccessful 6-10% of the time due to failure of the extrapolation process. SIMEX-L,

SIMEX-Q, and H&W performed markedly less well in terms of bias. The variability of

the RECS estimates was comparable to that of the SIMEX-NL estimates and generally

higher than that of the other methods.

We turn now to Simulation Study B, with non-normal measurement error. Again,

RECS showed low bias throughout. N&S had low bias with double exponential error, and

showed the best performance among the various methods in this case. With MODCHI

error, RECS had low bias, while all the other methods had substantial bias.

Next, we discuss Simulation Study C, which considered the performance of RECS

when the error model is misspecified (assumed normal but actually skewed normal or
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MODCHI). Aside from the case with both X and ε distributed MODCHI, the mean bias

was in the range of 15-35% and the median bias was in the range 10-20%. Thus, from

the standpoint of median bias, the RECS method performed reasonably – certainly much

better than the naive analysis with no measurement error correction. In the case with

both X and ε distributed MODCHI, RECS performed poorly. However, this result is

not too disturbing – because of the great difference between the MODCHI and normal

distributions, it is unlikely that an analyst would mistakenly fit a normal model to MOD-

CHI measurement errors. In principle, added robustness can be incorporated by using a

flexible distributional form for the error model, such as the “semi-nonparametric normal”

model of Gallant and Nychka (1987).

Finally, we turn to Simulation Study D, with two error-prone covariates and one

error-free covariate. The SIMEX and H&W methods performed poorly in estimating the

slope parameters of the two error-prone covariates. The SIMEX-NL method performed

especially poorly, producing estimates way off in the wrong direction. The RECS method

performed well. In Scenarios D1 (normal homoscedastic error) and D3 (MODCHI error),

RECS performed markedly better than N&S in terms of producing estimates with low

bias, while in Scenario D3 (normal heteroscedastic), the peformance was similar, with

RECS overestimating and N&S underestimating.

The degree of penalization in the RECS method tended to be very low throughout;

the mean α value was less than 0.01 in all simulation scenarios studied.

5. Practical Illustration

We illustrate the method on data from the Nurses’ Health Study (NHS). The NHS

began in 1976 when 121,700 female nurses aged 30-55 returned a questionnaire about their

lifestyle and their health. Here, we analyze the relationship between physical activity and

mortality among women diagnosed with breast cancer during the course of the NHS

follow-up. This relationship was previously examined by Holmes et al. (2005). The
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present analysis involves a subset of the nurses included in the analysis of Holmes et al.

Specifically, we consider the group of 1660 nurses who were diagnosed with breast cancer

at least 10 years before the administrative end of the study, June 2002. This is the main

study. The endpoint is the binary variable defined as breast cancer death with the first

10 years following diagnosis. The total number of such deaths was 188. In NHS, physical

activity was assessed by a questionnaire in which women were asked how much time they

spent on average during the past year on each of the most common forms of leisure time

physical activity. The questionnaire results were then converted into metabolic equivalent

task hours per week (METS). Validation data were available from 149 women from the

NHS II study (Wolf et al., 1994), a study begun in 1989 which involved a cohort of U.S.

female nurses similar to that of the NHS, and in which the same physical activity questions

were asked. In our analysis, these data are regarded as arising from an external validation

study. In the validation study, METS was assessed using both the questionnaire and a

detailed activity diary, with the diary regarded as the gold standard. We denote the

METS value based on diary data by X and the METS value based on questionnaire data

by W . The degree of measurement error is considerable, with the correlation between X

and W in the validation study being 0.47.

Wolf et al. reported that the distribution of METS was skewed, and a square-root

transformation yielded a distribution closer to the normal. Initially we considered using

the square-root transformation in the measurement error model in our analysis, but we

later decided that it would be better to use a transformation that maps the positive half

line into the entire real line, in order to facilitate modeling the measurement error using the

normal distribution or another distribution with support on the entire real line. Denoting

the true METS value by X, the transformation we ultimately used was X∗ = log(1 +X).

We analyzed the main cohort data using two measurement error models developed

from the validation data. We refer to these models as MEM1 and MEM2. Both models

were of the form W ∗
i = ω0 + ω1X

∗
i + εi. In MEM1, εi was taken to have the N(0, σ2)
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distribution, independent of X∗i . MEM2 incorporated dependence between εi and X∗i ,

with the conditional distribution of εi given X∗i taken to be N(0, γ1 + γ2|X∗i − µ|), with

µ = E[X∗i ]. The parameters ω0, ω1 were estimated by simple linear regression in both

models (weighted regression based on the MEM2 model for εi produced virtually iden-

tical estimates). For MEM1, σ2 was estimated by the regression MSE in the standard

manner. For MEM2, γ1 and γ2 were estimated via regression analysis of the squares of the

residuals obtained from MEM1; in this regression analysis, the t-test on γ2 was border-

line significant (p=0.0614), suggesting some evidence of heteroscedasticity. The estimates

obtained were ω0 = 1.2271, ω1 = 0.5653, σ2 = 0.8181, γ1 = 0.5883, and γ2 = 0.3497.

Graphical inspection of the normalized residuals based on the MEM2 model for εi showed

reasonable conformity to a normal distribution.

A preliminary analysis of the main study data indicated that the log odds of breast

cancer could be reasonably expressed as a linear function of log(1 + METS), so we took

this as the analysis variable in our logistic regression model. The preliminary analysis also

examined a wide range of potential confounding variables, and revealed that adjusting for

these variables had little effect on the results, and so in our analysis we deal only with

the variable METS.

We implemented the RECS method with 6 basis functions and K = K ′ = 20 quadra-

ture points in the quadrature calculations. The R code for running this example is posted

on the first author’s website (http://pluto.huji.ac.il/˜mszucker/recs-example.zip).

We also applied the SIMEX and N&S methods to the data. The H&W method is not rele-

vant, since we have an external validation design rather than a replicate measures design.

Standard errors for the SIMEX and N&S methods were computed using the bootstrap

with 100 replications.

Table 7 presents the results for the various methods. The naive method was applied

in two forms: (1) using W ∗
i as is (Naive1) and (2) using W̃ ∗

i = (W ∗
i − ω0)/ω1, thus

correcting for location-scale bias but not for measurement error (Naive2). SIMEX-L
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yielded a slope estimate similar to that yielded larger than Naive2, while SIMEX-Q gave

a slightly larger estimate. RECS-MEM1, N&S, and SIMEX-NL yielded slope estimates

differing markedly from the Naive2 estimate, and the estimates yielded by these three

methods were comparable. RECS-MEM2 yielded a slope estimate differing substantially

from RECS-MEM1, showing the impact of a more refined error model.

6. Discussion

We have presented a new “regularized corrected score” (RECS) approach to adjusting

for covariate error in nonlinear regression problems. The approach builds on the corrected

score method developed by Nakamura and colleagues. In the case of a continuous error-

prone covariate, the corrected score approach involves solving an integral equation. In

many problems, an exact solution to this integral equation does not exist or cannot be

practically obtained, and so we have proposed using an approximate solution obtained

using the method of regularization. In the setting of logistic regression, a series of simu-

lation studies showed that the method performs well in general, and offers an advantage

over existing methods in terms of superior performance in certain situations. In particu-

lar, the RECS method showed a marked advantage over competing methods in the case

of a single error-prone covariate with MODCHI error and in the case of two error-prone

and one error-free covariates under two of the error models studied.

We have developed the theory in the general setting of classical likelihood models,

which covers, in particular, generalized linear models such as nonlinear regression, logistic

regression, and Poisson regression. It is possible to extend the development to other

settings. In particular, it is of interest to extend the method to the setting of Cox

regression for survival data, using the work of Zucker and Spiegelman (2008) on corrected

score analysis for the Cox models with a discrete error-prone covariate as a starting point.

We plan to develop this extension in future work.

The computational complexity and load of the method is modest. For example, the

data analysis described in the preceding section finished in about 1 minute of real time,
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when run in R in batch mode on a VMware virtual machine configured with one AMD

2700 MHz processor and 1GB memory, installed on a physical machine SUN FIRE X4240.

The method presented here is a functional method in the sense of not requiring

information on the distribution of the true covariate. This is in contrast to many other

methods in the measurement error literature, such as regression calibration and likelihood-

based methods. We do rely on a parametric model for the conditional distribution of the

surrogate variable given the true variable, but our simulation results suggest that the

performance of the estimates is robust to the parametric model except when there is

an extreme discrepancy between the assumed and actual error model. In addition, it is

possible in principle to use a flexible parametric model such as on Gallant and Nychka’s

(1987) “semi-nonparametric” model, which makes the reliance on parametric modeling

less of a restriction. The method is extremely general in terms of the types of measurement

error models covered. It allows the measurement error to depend on the true covariate

value and on other covariates. It also allows differential error, where the measurement

error depends on the outcome. This flexibility is a distinct advantage relative to other

methods in the literature.
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Appendix 1

Evaluation of Integrals of the Form Aig(x)

As noted in the main text, the RECS procedure requires evaluation of integrals of

the form

E[g(Wi)|Xi = x] = Aig(x) =

∫
ai(x,w)g(w)dw. (10)

In our simulation studies, we work with measurement error models of the form W =

X +σ(X)ε, where ε is a random variable with density fε, independent of X. In this case,

we can write

Aig(x) =

∫
fε(v)g(x+ σ(x)v)dv.
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This integral can be evaluated using a quadrature approximation of the form

Aig(x)
.
=

K′∑
k=1

rkg(x+ σ(x)vk)

for suitable quadrature points and weights vk and rk. One case we consider is ε ∼ N(0, 1),

and in this case we use (modified) Gauss-Hermite points and weights. Another case we

consider is the case where ε is the double-exponential (Laplace) distribution with variance

1, and in this case we use Gauss-Laguerre type points and weights (with the points and

weights on the negative side of the real axis being the mirror image of those on the positive

side).

In cases where specialized methods of the above sort are not readily available, a more

general numerical approach can be used. In particular, if we let FW |X be the conditional

distribution function of W given X, then Aig(x) can be evaluated as

Aig(x)
.
=

1

K ′

K′∑
k=1

g(F−1
W |X(vk|x))

with vk = (k − 1
2
)/K ′.

Appendix 2

Proof of the Theorem

In proving Part (a) of the theorem, we rely on the L2 theory of integral operators as

set forth, for example, in Kress (1989). We recall that, for a general integral operator B,

the range of B is defined as R(B) = {h ∈ L2 : h = Bg for some g ∈ L2} and the null

space of B is defined N (B) = {g ∈ L2 : Bg = 0}. We use a superscript ⊥ to denote

orthogonal complement and the notation cl(C) to denote the L2 closure of a set C ⊂ L2.

Kress (1989, Theorem 15.8) states that for a bounded linear operator B : L2 → L2

with adjoint B∗, we have N (B∗)⊥ = cl(R(B)). Since ai(x,w) is a conditional density,
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the operator Ai is a bounded linear operator with norm 1. Assumption A4 specifies that

N (A∗i ) consists only of the zero function. It follows that the L2 closure of R(Ai) is equal

to the whole of L2. This, in turn, implies that inf δ̄∈L2 ‖Aiδ̄ − g‖ = 0 ∀ g ∈ L2, although

the infimum is not necessarily attained, which, in our setting, corresponds to the fact that

an exact corrected score may not exist.

Now, for a given L2 function δ, let δ̄(α) denote the minimizer of L(δ̄;Ai, δ, α) =

‖Aiδ̄ − δ‖2 + α‖δ̄‖2. We claim that limα→0 ‖δ̄(α) − δ‖=0. The proof is simple, and is

implicit in Kress (1989, Chapter 16), but we give it for completeness. We have

‖Aiδ̄(α)− δ‖2 ≤ ‖Aiδ̄(α)− δ‖2 + α‖δ̄(α)‖2 ≤ ‖Aig − δ‖2 + α‖g‖2

for any g ∈ L2. Letting α → 0, we get limα→0 ‖Aiδ̄(α) − δ‖2 ≤ ‖Aig − δ‖2. Since g was

arbitrary, we get limα→0 ‖Aiδ̄(α) − δ‖2 ≤ infg ‖Aig − δ‖2, but the infimum on the right

side, as we just saw, is equal to zero. We have thus proved the claim.

In the context of our RECS estimator, we obtain the following result: defining

rij(x,θ, α) = Aiūij(x,θ, α) − uij(x,θ), we have ‖rij(·,θ, α)‖ → 0 as α → 0. At this

point, we have this convergence only at a fixed value of θ. However, since Θ is assumed

compact and uij(x,θ) is continuous in θ, pointwise convergence implies uniform conver-

gence. This yields the desired result.

Let us now turn to Part (b). Define ∆ijs(x) = uijs(x,θ)−Aiuijs(x,θ) and ∆̄ijs(w,θ, α) =

ūijs(w,θ, α) − uijs(w,θ). We see from (4) that the solution to L(δ̄;Ai, δ, α) is a linear

function of δ. It follows that, just as the function ∆̄ij(·,θ, α) is the minimizer of ‖Aiδ̄ −

∆ij‖2 +α‖δ̄‖2, so, too, the function ∆̄ijs(·,θ, α) is the minimizer of ‖Aiδ̄−∆ijs‖2 +α‖δ̄‖2.

We can therefore apply the arguments just used in the proof of Part (a) to prove Part

(b).

Given the results in Parts (a) and (b) of the theorem, the results in Parts (c), (d), and

(f) follow from standard estimating equations theory, as in, for example, Huber (1967),
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White (1982), and van der Vaart (1998, Ch. 5).

Finally, we turn to Part (e). From the development in Part (a), we have

ūE(θ̃(α), α) = E[ūi(Wi, θ̃
(α))] = E[ui(Xi, θ̃

(α))] + E[ri(Xi, θ̃
(α), α)].

The left side of the above equation, by definition, is zero. Expanding the first term of the

right side in a first-order Taylor series around θ0, we get

−DE(θ#)(θ̃(α) − θ0) + E[ri(Xi, θ̃
(α), α)] = 0.

where DE(θ) is as defined in Assumption A3 θ# is some value between θ0 and θ̃(α). Part

(a) implies that the second term on the right side tends to zero as α → 0. Given this,

along with the nonsingularity condition A3, we obtain the desired conclusion θ̃(α) → θ0

as α→ 0.

Appendix 3

Correcting the Covariance for Estimation of A(i)

We describe here how to correct the covariance of θ̂ for estimation of A(i). In the

development below, we generally suppress the dependence of various quantities on the

penalty parameter α.

The parameter ξ entering into ai(x,w, ξ) is estimated on the basis of an external or

internal validation sample, or a replicate measures study, of size denoted by m. Let ξ0

denote the true value of ξ. We assume that the estimator ξ̂ has an approximate normal

distribution with mean ξ0 and covariance matrix m−1Γ, along with an estimator of the

matrix Γ. This setup is a typical one in practice. For the asymptotics we assume that

m and n are of the same order of magnitude, i.e., m/n → ζ for some constant ζ as

n→∞. Otherwise the error in ξ̂ will either be dominated by or will dominate the error
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in θ due to the variation in the outcome data. Typically ζ will be between 0 and 1.

The asymptotic covariance matrix of ξ may then be expressed as n−1ζ−1Γ. To emphasize

the dependence of the corrected score on ξ, we write Ū(θ, ξ). The estimated asymptotic

covariance matrix of Ū(θ̃(α), ξ0) is n−1F(θ̂) where F(θ) is as defined in (9). We denote

the asymptotic covariance between Ū(θ) and ξ̂ by n−1Υ. The form of Υ depends on the

type of data used to estimate ξ, and will be discussed shortly.

Let Ū′(θ, ξ) denote the matrix whose (r, ν) element is the partial derivative of Ūr(θ, ξ)

with respect to ξν . By Taylor expansion, we have

0 = Ū(θ̂(α), ξ̂) = Ū(θ̃(α), ξ0)D̄(θ̃(α), ξ0)(θ̂(α) − θ̃(α)) + Ū′(θ̃(α), ξ0)(ξ̂ − ξ0) + op(1/n),

leading to

−
√
n(θ̂(α)−θ̃(α)) = D̄(θ̃(α), ξ0)−1

[
{
√
n Ū(θ̃(α), ξ0)}+ Ū′(θ̃(α), ξ0){

√
n (ξ̂ − ξ0)}

]
+op(1/n).

Accordingly, the estimated asymptotic covariance matrix of
√
n(θ̂−θ̃(α)) is V̂(θ̂, ξ̂), where

V̂(θ, ξ) is now defined as

V̂(θ, ξ) = D̄(θ, ξ)−1
[
F(θ) + ζ−1Ū′(θ, ξ)Γ̂Ū′(θ, ξ)T + Υ̂Ū′(θ, ξ)T

]
D̄(θ, ξ)−1.

If ξ is estimated from an external validation or replicate measures study, then ξ̂ is

obviously independent of the corrected score function Ū(θ), and thus Υ = 0. When

ξ is estimated from an internal validation or replicate measures study, Υ is nonzero

and must be estimated. We consider the setting where the validation/replicate data are

i.i.d. across individuals, and ξ is estimated by maximum likelihood. Let gi(ξ) denote

the log likelihood function for the validation/replicate data on individual i. The overall

normalized log likelihood for ξ is then g(ξ) = m−1
∑

i∈R gi(ξ), where R denotes the set

of individuals in the internal validation/replicate sample. Let g′(ξ) and g′′(ξ) denote

the gradient vector and Hessian matrix, respectively, of g(ξ), and let g′i(ξ) denote the
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gradient of gi(ξ). We can then express ξ̂ in terms of the classic asymptotic approximation

ξ̂
.
= −g′′(ξ0)−1g′(ξ0). Define Ω = Cov(ūi(θ0, ξ0),g′i(ξ0)). The matrix Ω can be estimated

empirically by

Ω̂ =
1

m

∑
i∈R

ūi(θ̂, ξ̂)g′i(ξ̂)T . (11)

We then estimate Υ by Υ̂ = Ω̂g′′(ξ̂)−1. In addition, in the present setup we have

Γ̂ = g′′(ξ̂)−1.

In principle, expressions can be worked out for the partial derivatives that make up

the matrix Ū′(θ, ξ), but the algebra is cumbersome. Therefore, in our practical imple-

mentation, we use numerical partial derivatives.
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Table 1

Simulation Study A
X ∼ N(0, 1) and ε ∼ N(0, γ1 + γ2|X|+ γ3Y )

Sample Size n=200, Validation Sample Size m=70

β0 β1

M MD Emp-SD IQ-SD 95% CI M MD Emp-SD IQ-SD 95% CI F
γ1 = 0.5 γ2 = 0 γ3 = 0

Naive 0.9526 0.9459 0.1737 0.1695 0.93 0.6469 0.6379 0.1512 0.1520 0.36 0
RECS 1.0323 1.0217 0.2122 0.1983 0.96 1.0782 1.0314 0.3373 0.3013 0.96 0
N&S 1.0219 1.0110 0.2002 0.1905 - 1.0477 1.0330 0.2685 0.2876 - 0
SIMEX - Q 0.9942 0.9840 0.1890 0.1890 - 0.8940 0.8737 0.2245 0.2157 - 0
SIMEX - L 0.9718 0.9620 0.1800 0.1764 - 0.7619 0.7501 0.1803 0.1794 - 0
SIMEX - NL 1.0548 1.0252 0.3080 0.2261 - 1.0681 1.0161 0.3312 0.3032 - 61
H&W 0.9470 0.9752 0.6279 0.2387 - 1.0600 0.9514 0.5264 0.3818 - 4

γ1 = 1 γ2 = 0 γ3 = 0
Naive 0.9231 0.9153 0.1694 0.1665 0.91 0.4713 0.4660 0.1262 0.1264 0.03 0
RECS 1.0613 1.0346 0.2683 0.2283 0.96 1.1157 1.0231 0.5421 0.4266 0.93 2
N&S 0.9944 0.9849 0.1962 0.1950 - 0.9499 0.9759 0.2263 0.2380 - 0
SIMEX - Q 0.9645 0.9515 0.1855 0.1809 - 0.7182 0.6989 0.2048 0.2039 - 0
SIMEX - L 0.9390 0.9270 0.1748 0.1675 - 0.5663 0.5595 0.1525 0.1534 - 0
SIMEX - NL 1.0564 1.0068 0.4722 0.2328 - 1.1431 0.9997 0.5593 0.4151 - 63
H&W 0.9065 0.9495 0.6558 0.2483 - 0.8840 0.7851 0.5249 0.3751 - 4

γ1 = 0.3 γ2 = 0.25 γ3 = 0
Naive 0.9522 0.9446 0.1734 0.1728 0.93 0.6573 0.6494 0.1553 0.1573 0.39 0
RECS 1.0233 1.0121 0.2057 0.1953 0.96 1.0429 1.0054 0.3102 0.2784 0.95 0
N&S 1.0148 1.0058 0.1966 0.1942 - 1.1025 1.0868 0.2914 0.3217 - 0
SIMEX - Q 0.9933 0.9825 0.1884 0.1913 - 0.9169 0.8926 0.2368 0.2313 - 0
SIMEX - L 0.9713 0.9615 0.1796 0.1779 - 0.7750 0.7620 0.1857 0.1868 - 0
SIMEX - NL 1.0427 1.0199 0.2912 0.2209 - 1.1265 1.0607 0.3867 0.3321 - 74
H&W 0.9408 0.9680 0.5539 0.2150 - 1.0370 0.9679 0.4451 0.2980 - 1

γ1 = 0.7 γ2 = 0.35 γ3 = 0
Naive 0.9238 0.9145 0.1695 0.1664 0.91 0.4812 0.4749 0.1284 0.1279 0.04 0
RECS 1.0363 1.0161 0.2423 0.2153 0.96 1.0658 0.9797 0.4673 0.3663 0.91 1
N&S 0.9854 0.9719 0.1940 0.1920 - 0.9924 1.0177 0.2351 0.2424 - 0
SIMEX - Q 0.9650 0.9536 0.1855 0.1861 - 0.7358 0.7167 0.2115 0.2053 - 0
SIMEX - L 0.9397 0.9285 0.1748 0.1668 - 0.5780 0.5685 0.1552 0.1542 - 0
SIMEX - NL 1.0484 1.0065 0.4375 0.2305 - 1.2113 1.0383 0.6183 0.4470 - 63
H&W 0.9388 0.9663 0.6524 0.2431 - 1.0310 0.9134 0.5109 0.3566 - 4

γ1 = 0.15 γ2 = 0.25 γ3 = 0.25
Naive 0.9524 0.9433 0.1715 0.1717 0.94 0.6512 0.6437 0.1513 0.1488 0.37 0
RECS 1.0274 1.0114 0.2066 0.1964 0.96 1.0782 1.0316 0.3477 0.2921 0.95 0
N&S 1.0107 0.9963 0.1925 0.1890 - 1.0065 0.9783 0.2847 0.2847 - 0
SIMEX - Q 0.9891 0.9783 0.1838 0.1838 - 0.8718 0.8545 0.2241 0.2194 - 0
SIMEX - L 0.9704 0.9600 0.1769 0.1794 - 0.7587 0.7491 0.1799 0.1735 - 0
SIMEX - NL 1.0223 1.0131 0.2497 0.2053 - 1.0206 0.9698 0.3251 0.2758 - 102
H&W 1.0370 1.0350 0.4937 0.2231 - 1.0410 0.9682 0.4373 0.3121 - 2

γ1 = 0.35 γ2 = 0.25 γ3 = 0.50
Naive 0.9292 0.9207 0.1676 0.1657 0.91 0.5091 0.5029 0.1282 0.1285 0.06 0
RECS 1.0439 1.0182 0.2389 0.2105 0.96 1.1123 0.9989 0.4765 0.3793 0.93 0
N&S 0.9972 0.9847 0.1913 0.1868 - 0.9089 0.9034 0.2590 0.2906 - 0
SIMEX - Q 0.9662 0.9564 0.1797 0.1757 - 0.7259 0.7125 0.1986 0.1868 - 0
SIMEX - L 0.9450 0.9362 0.1721 0.1720 - 0.6028 0.5954 0.1534 0.1520 - 0
SIMEX - NL 1.0190 0.9887 0.3647 0.2187 - 0.9651 0.8793 0.4155 0.2943 - 67
H&W 1.1080 1.0940 0.6033 0.2595 - 1.0600 0.9600 0.5004 0.3425 - 3

N&S - Novick and Stefanski (2002); H&W - Huang and Wang (2001)
SIMEX results are based on B = 100, λ = (0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9) and the simex R library
L - linear extrapolation; Q - quadratic extrapolation; NL - non-linear extrapolation of Cook and Stefanski (1994)
M - empirical mean; MD - empirical median; Emp-SD - empirical standard deviation; IQ-SD - inter-quartile dispersion;
95% CI - empirical coverage rate of 95% Wald confidence interval; F - number of samples with no solution
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Table 2

Simulation Study B
Non-Normal Measurement Error with Normal or Non-Normal True Covariate

Sample Size n=200, Validation Sample Size m=70

β0 β1

M MD Emp-SD IQ-SD 95% CI M MD Emp-SD IQ-SD 95% CI F
X ∼ N(0, 1); ε ∼ Double exponential with Var(ε) = 0.5

Naive 0.9467 0.9350 0.1775 0.1804 0.93 0.6378 0.6287 0.1609 0.1517 0.33 0
RECS 1.0288 1.0048 0.2192 0.1989 0.95 1.0684 0.9986 0.3611 0.3264 0.95 0
N&S 1.0138 0.9983 0.2027 0.1964 - 1.0553 1.0290 0.2964 0.3195 - 0
SIMEX - Q 0.9884 0.9763 0.1931 0.1883 - 0.8905 0.8641 0.2438 0.2276 - 0
SIMEX - L 0.9654 0.9529 0.1836 0.1772 - 0.7519 0.7381 0.1924 0.1831 - 0
SIMEX - NL 1.0471 1.0189 0.2754 0.2135 - 1.1111 1.0256 0.4207 0.3336 - 68
H&W 0.9980 0.9919 0.4298 0.2157 - 1.0770 0.9848 0.4523 0.3202 - 0

X ∼ N(0, 1); ε ∼ Double exponential with Var(ε) = 1
Naive 0.9174 0.9078 0.1731 0.1787 0.91 0.4659 0.4598 0.1370 0.1349 0.04 0
RECS 1.0545 1.0167 0.2735 0.2291 0.96 1.1362 1.0089 0.5714 0.4335 0.93 6
N&S 0.9746 0.9617 0.1965 0.1898 - 0.9647 1.0078 0.2724 0.2683 - 0
SIMEX - Q 0.9583 0.9474 0.1891 0.1861 - 0.7205 0.6970 0.2289 0.2165 - 0
SIMEX - L 0.9327 0.9228 0.1782 0.1772 - 0.5599 0.5514 0.1659 0.1601 - 0
SIMEX - NL 1.0032 0.9982 0.5742 0.2513 - 1.2130 1.0485 0.7743 0.4804 - 106
H&W 0.9353 0.9704 0.6913 0.2543 - 0.9886 0.8985 0.4636 0.3336 - 1

X ∼ N(0, 1); ε ∼ Modified χ2
1 with Var(ε) = 0.5

Naive 0.9732 0.9745 0.1785 0.1692 0.93 0.6822 0.6793 0.1706 0.1672 0.47 0
RECS 1.0335 1.0295 0.2091 0.1929 0.95 1.0555 1.0348 0.2981 0.2775 0.96 0
N&S 1.0920 1.0855 0.2245 0.2142 - 1.1800 1.1821 0.3121 0.3269 - 0
SIMEX - Q 1.0340 1.0277 0.2044 0.1846 - 0.9678 0.9500 0.2624 0.2617 - 0
SIMEX - L 0.9980 0.9973 0.1878 0.1727 - 0.8080 0.8028 0.2052 0.2024 - 0
SIMEX - NL 1.1297 1.0882 0.3964 0.2483 - 1.2028 1.1617 0.3912 0.3573 - 45
H&W 0.7934 0.8692 0.5560 0.1964 - 1.0260 0.9809 0.3822 0.2861 - 2

X ∼ N(0, 1); ε ∼ Modified χ2
1 with Var(ε) = 1

Naive 0.9510 0.9502 0.1765 0.1667 0.93 0.5196 0.5146 0.1547 0.1552 0.13 0
RECS 1.0519 1.0315 0.2444 0.2116 0.96 1.0869 1.0345 0.3970 0.3546 0.97 0
N&S 1.1200 1.1172 0.2150 0.2039 - 1.1779 1.2122 0.2307 0.1927 - 0
SIMEX - Q 1.0262 1.0140 0.2135 0.1890 - 0.8320 0.8234 0.2711 0.2765 - 0
SIMEX - L 0.9734 0.9703 0.1857 0.1690 - 0.6269 0.6187 0.1880 0.1853 - 0
SIMEX - NL 1.1226 1.0980 1.0702 0.4804 - 1.6444 1.4262 0.9090 0.7413 - 59
H&W 0.5574 0.7494 0.8302 0.2506 - 0.9640 0.8949 0.4753 0.3069 - 3

X ∼ Modified χ2
1 with Var(X) = 1; ε ∼ Modified χ2

1 with Var(ε) = 0.5
Naive 0.9059 0.9015 0.1689 0.1632 0.90 0.5461 0.5348 0.1709 0.1662 0.25 0
RECS 1.0862 1.0356 0.2953 0.2626 0.97 1.1279 1.0479 0.4989 0.4414 0.94 0
N&S 1.2710 1.2686 0.3225 0.3558 - 1.3957 1.5027 0.4630 0.5263 - 0
SIMEX - Q 0.9703 0.9592 0.1968 0.1913 - 0.8175 0.7884 0.2870 0.2713 - 0
SIMEX - L 0.9253 0.9166 0.1750 0.1690 - 0.6492 0.6354 0.2056 0.1979 - 0
SIMEX - NL 1.0547 1.0083 0.9484 0.3625 - 1.2668 1.1121 0.6949 0.5137 - 43
H&W 0.6861 0.8618 0.8291 0.2053 - 0.9610 0.8409 0.5507 0.3729 - 6

X ∼ Modified χ2
1 with Var(X) = 1; ε ∼ Modified χ2

1 with Var(ε) = 1
Naive 0.8784 0.8740 0.1661 0.1604 0.87 0.3917 0.3824 0.1448 0.1402 0.03 0
RECS 1.1134 1.0370 0.3589 0.2897 0.97 1.1272 1.0319 0.5784 0.5316 0.93 0
N&S 1.1856 1.1649 0.2699 0.2898 - 1.1392 1.2540 0.3594 0.3506 - 0
SIMEX - Q 0.9337 0.9243 0.1926 0.1794 - 0.6396 0.6176 0.2602 0.2498 - 0
SIMEX - L 0.8923 0.8876 0.1709 0.1616 - 0.4720 0.4604 0.1749 0.1683 - 0
SIMEX - NL 0.7096 0.8059 0.8610 0.4040 - 1.4470 1.1876 1.0740 0.8718 - 146
H&W 0.6004 0.7683 0.7942 0.2090 - 0.8084 0.6995 0.5894 0.4255 - 13

N&S - Novick and Stefanski (2002); H&W - Huang and Wang (2001)
SIMEX results are based on B = 100, λ = (0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9) and the simex R library
L - linear extrapolation; Q - quadratic extrapolation; NL - non-linear extrapolation of Cook and Stefanski (1994)
M - empirical mean; MD - empirical median; Emp-SD - empirical standard deviation; IQ-SD - inter-quartile dispersion;
95% CI - empirical coverage rate of 95% Wald confidence interval; F - number of samples with no solution
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Table 3

Simulation Study C
Performance of RECS Under Misspecified Error Model

Assumed Error Model: ε ∼ N(0, σ2)
Results for Estimate of β1

Naive Estimate RECS Estimate
Distn of X True Distn of ε Mean Median Emp-SE IQ-SE Mean Median Emp-SE IQ-SE

Normal Skewed Normal 0.6621 0.6569 0.1655 0.1668 1.1885 1.1028 0.4790 0.3466
Normal MODCHI 0.6821 0.6791 0.1706 0.1672 1.2778 1.1592 0.5621 0.4267
Skewed Normal Skewed Normal 0.5992 0.5895 0.1620 0.1589 1.1983 1.0923 0.5506 0.4355
Skewed Nomal MODCHI 0.6058 0.6043 0.1669 0.1698 1.3466 1.1862 0.6752 0.5526
MODCHI Skewed Normal 0.5250 0.5209 0.1573 0.1532 1.3280 1.1335 0.7406 0.5932
MODCHI MODCHI 0.5460 0.5347 0.1710 0.1661 1.6553 1.3567 1.0210 0.9698

Table 4

Simulation Study D
Two Error-Prone Covariates and One Error-Free Covariate

Scenario D1: X1, X2, Z ∼ N(0, 1) and ε1, ε2 ∼ N(0, 1)
Sample Size n=500

β1 β2

M MD Emp-SD IQ-SD 95% CI M MD Emp-SD IQ-SD 95% CI
Naive 0.4296 0.4242 0.0804 0.0781 0.000 0.4282 0.4235 0.0853 0.0857 0.000
RECS 1.0817 1.0341 0.3116 0.2595 0.972 1.0784 1.0305 0.3333 0.2764 0.956
N&S 0.8292 0.8299 0.1308 0.1299 - 0.8256 0.8280 0.1436 0.1434 -
SIMEX - Q 0.8113 0.8038 0.1377 0.1333 - 0.8096 0.8006 0.1450 0.1378 -
SIMEX - L 0.5235 0.5189 0.0917 0.0911 - 0.5219 0.5150 0.0969 0.0953 -
SIMEX - NL -2.6768 -2.5286 1.1003 1.0482 - -2.5988 -2.4974 1.1896 1.0356 -
H&W 0.6678 0.6675 0.5038 0.3360 - 0.6975 0.6744 0.5318 0.3407 -

β0 β3

M MD Emp-SD IQ-SD 95% CI M MD Emp-SD IQ-SD 95% CI F
Naive 0.8587 0.8575 0.1163 0.1129 0.734 0.8626 0.8599 0.1201 0.1223 0.769 0
RECS 1.0500 1.0294 0.2112 0.1791 0.972 1.0525 1.0286 0.2079 0.1907 0.979 0
N&S 0.9435 0.9415 0.1371 0.1359 - 0.9476 0.9444 0.1384 0.1403 - 0
SIMEX - Q 0.9553 0.9502 0.1433 0.1394 - 0.9587 0.9524 0.1452 0.1519 - 0
SIMEX - L 0.8821 0.8803 0.1215 0.1214 - 0.8857 0.8819 0.1247 0.1278 - 0
SIMEX - NL 0.3396 0.3544 1.1798 0.5785 - 0.3642 0.4221 1.1742 0.5205 - 285
H&W 0.7535 0.8516 0.7885 0.2376 - 1.0277 0.9679 0.4669 0.3039 - 14

N&S - Novick and Stefanski (2002); H&W - Huang and Wang (2001)
SIMEX results are based on B = 100, λ = (0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9) and the simex R library
L - linear extrapolation; Q - quadratic extrapolation; NL - non-linear extrapolation of Cook and Stefanski (1994)
M - empirical mean; MD - empirical median; Emp-SD - empirical standard deviation; IQ-SD - inter-quartile dispersion;
95% CI - empirical coverage rate of 95% Wald confidence interval; F - number of samples with no solution

35

Hosted by The Berkeley Electronic Press



Table 5

Simulation Study D
Two Error-Prone Covariates and One Error-Free Covariate

Scenario D2: X1, X2, Z ∼ N(0, 1) and ε1, ε2 ∼ N(0, 0.4 + 0.25(|X1|+ |X2|+ |Z|))
Sample Size n=500

β1 β2

M MD Emp-SD IQ-SD 95% CI M MD Emp-SD IQ-SD 95% CI
Naive 0.4386 0.4334 0.0824 0.0792 0.001 0.4364 0.4313 0.0868 0.0857 0.000
RECS 1.1884 1.1122 0.3800 0.3126 0.986 1.1822 1.1151 0.4044 0.3313 0.977
N&S 0.8588 0.8602 0.1339 0.1339 - 0.8536 0.8582 0.1472 0.1455 -
SIMEX - Q 0.8345 0.8242 0.1431 0.1394 - 0.8315 0.8231 0.1497 0.1439 -
SIMEX - L 0.5339 0.5265 0.0940 0.0903 - 0.5314 0.5257 0.0985 0.0973 -
SIMEX - NL -2.3990 -2.2229 0.9623 0.9407 - -2.3830 -2.1980 1.0071 0.9666 -
H&W 0.6165 0.6176 0.4809 0.3277 - 0.6455 0.6072 0.4809 0.3271 -

β0 β3

M MD Emp-SD IQ-SD 95% CI M MD Emp-SD IQ-SD 95% CI F
Naive 0.8593 0.8586 0.1162 0.1153 0.740 0.8712 0.8694 0.1223 0.1223 0.791 0
RECS 1.0787 1.0475 0.2359 0.1896 0.981 1.0828 1.0482 0.2405 0.2007 0.983 1
N&S 0.9335 0.9310 0.1358 0.1391 - 0.9674 0.9648 0.1439 0.1472 - 0
SIMEX - Q 0.9569 0.9531 0.1434 0.1394 - 0.9793 0.9746 0.1516 0.1562 - 0
SIMEX - L 0.8827 0.8824 0.1214 0.1219 - 0.8961 0.8921 0.1276 0.1314 - 0
SIMEX - NL 0.3789 0.3653 1.1233 0.5524 - 0.3096 0.3920 0.9646 0.4150 - 185
H&W 0.7637 0.8325 0.9796 0.2280 - 0.9627 0.9279 0.4248 0.2837 - 9

N&S - Novick and Stefanski (2002); H&W - Huang and Wang (2001)
SIMEX results are based on B = 100, λ = (0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9) and the simex R library
L - linear extrapolation; Q - quadratic extrapolation; NL - non-linear extrapolation of Cook and Stefanski (1994)
M - empirical mean; MD - empirical median; Emp-SD - empirical standard deviation; IQ-SD - inter-quartile dispersion;
95% CI - empirical coverage rate of 95% Wald confidence interval; F - number of samples with no solution
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Table 6

Simulation Study D
Two Error-Prone Covariates and One Error-Free Covariate

Scenario D3: X1, X2 ∼ Modified χ2
1, Var(X1) = Var(X2) = 1 Z ∼ N(0, 1)

and ε1, ε2 ∼ Modified χ2
1, Var(ε1) = Var(ε2) = 1

Sample Size n=500

β1 β2

M MD Emp-SD IQ-SD 95% CI M MD Emp-SD IQ-SD 95% CI
Naive 0.3853 0.3814 0.0887 0.0915 0.000 0.3830 0.3811 0.0843 0.0856 0.000
RECS 1.0430 0.9841 0.3725 0.3328 0.942 1.0322 0.9850 0.3319 0.3016 0.946
N&S 0.8668 0.8692 0.2603 0.2901 - 0.8662 0.8805 0.2536 0.2885 -
SIMEX - Q 0.7463 0.7315 0.1586 0.1598 - 0.7431 0.7317 0.1493 0.1488 -
SIMEX - L 0.4672 0.4624 0.1009 0.1021 - 0.4647 0.4602 0.0958 0.0989 -
SIMEX - NL -1.5004 -1.2992 0.7297 0.5271 - -1.5046 -1.3341 0.6896 0.5078 -
H&W 0.4723 0.4276 0.2733 0.2108 - 0.4625 0.4216 0.2849 0.1992 -

β0 β3

M MD Emp-SD IQ-SD 95% CI M MD Emp-SD IQ-SD 95% CI F
Naive 0.8007 0.7971 0.1144 0.1113 0.548 0.8883 0.8893 0.1206 0.1207 0.809 0
RECS 1.0595 1.0225 0.2447 0.2084 0.963 1.0413 1.0232 0.1856 0.1667 0.971 0
N&S 1.0419 1.0414 0.1563 0.1547 - 0.9247 0.9198 0.1399 0.1417 - 0
SIMEX - Q 0.9049 0.8978 0.1456 0.1383 - 0.9626 0.9588 0.1402 0.1399 - 0
SIMEX - L 0.8199 0.8146 0.1191 0.1133 - 0.9059 0.9073 0.1243 0.1244 - 0
SIMEX - NL 0.5453 0.5554 0.1777 0.1286 - 0.4842 0.5551 0.9577 0.3875 - 60
H&W 0.3332 0.4979 0.6451 0.2517 - 0.9155 0.9023 0.1798 0.1638 - 1

N&S - Novick and Stefanski (2002); H&W - Huang and Wang (2001)
SIMEX results are based on B = 100, λ = (0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9) and the simex R library
L - linear extrapolation; Q - quadratic extrapolation; NL - non-linear extrapolation of Cook and Stefanski (1994)
M - empirical mean; MD - empirical median; Emp-SD - empirical standard deviation; IQ-SD - inter-quartile dispersion;
95% CI - empirical coverage rate of 95% Wald confidence interval; F - number of samples with no solution

Table 7

NHS Results

β0 β1

Method Estimate SE Estimate SE
Naive1 -1.7213 0.1436 -0.1802 0.0680
Naive2 -1.9425 0.0862 -0.1019 0.0384
RECS-MEM1 -1.7496 0.1328 -0.2733 0.1141
RECS-MEM2 -1.6186 0.1693 -0.3970 0.1758
N&S -1.7501 0.1297 -0.2726 0.1270
SIMEX-L -1.9186 0.0883 -0.1223 0.0463
SIMEX-Q -1.8722 0.0945 -0.1630 0.0603
SIMEX-NL -1.7256 0.1404 -0.2966 0.1408
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