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CASE-CONTROL SURVIVAL ANALYSIS WITH A GENERAL
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In this work we deal with correlated failure time (age at onset) data
arising from population-based, case-control studies, where case and control
probands are selected by population-based sampling and an array of risk
factor measures is collected for both cases and controls and their relatives.
Parameters of interest are effects of risk factors on the failure time hazard
function and within-family dependencies among failure times after adjusting
for the risk factors. Due to the retrospective sampling scheme, large sample
theory for existing methods has not been established. We develop a novel
technique for estimating the parameters of interest under a general semipara-
metric shared frailty model. We also present a simple, easily computed, and
noniterative nonparametric estimator for the cumulative baseline hazard func-
tion. We provide rigorous large sample theory for the proposed method. We
also present simulation results and a real data example for illustrating the
utility of the proposed method.

1. Introduction. Clustered failure times arise often in medical and epidemio-
logic studies. Examples include disease onset times of twins (with time expressed
in terms of age), multiple recurrence times of infections on an individual, or time
to blindness for the two eyes within an individual. A typical case-control family
study includes a random sample of independent diseased individuals (cases) and
nondiseased individuals (controls), along with their family members. An array of
genetic and environmental risk-factor measures is collected on these individuals.
Integration of genetic and environmental data is a central problem of modern ob-
servational epidemiology. Case-control family studies are powerful because they
provide an efficient way to assess the effect of risk factors on the occurrence of a
rare disease, and furthermore allow researchers to dissect genetic and environmen-
tal contributions to the disease based on the familial aggregation pattern of disease
clusters. Hopper [16] suggested that such study designs may be the future of epi-
demiology in general, not just genetic epidemiology. Hence, the need for statistical
methods that can exploit such data is acute.
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In this work we focus on population-based, matched case-control family studies,
where a number of case and control probands are randomly sampled from a well-
defined population. The probands are the index subjects of the ascertained families.
Here we use the term proband in a broad sense to refer to both cases and controls,
in contrast with the traditional usage in which probands refer only to cases.

Relative to classical case-control methods, analysis of these studies is compli-
cated in two major ways. First, comparisons are no longer solely between sub-
jects with and without the disease under study, but rather between collections of
the case probands and their relatives and the control probands and their relatives,
with each collection typically including many subjects both with and without the
disease under study. Second, data are clustered within families, and hence reflect
intra-familial correlation due to unmeasured genetic and environmental factors.

Our work is motivated by a recent breast cancer study [23, 24]. In this study,
the cases were incident breast cancer cases ascertained from the population-based
Surveillance, Epidemiology, and End Results (SEER) cancer registry. The con-
trols were selected by random digit dialing, and were matched with cases based on
sex, age at diagnosis and county of residence. Female relatives of case and control
probands were identified, and the risk factor and outcome information was col-
lected on these relatives. The primary goals of the study are (a) to determine the
degree of familial dependence with respect to age at breast cancer diagnosis; and
(b) to assess the effects of covariates on breast cancer risk.

Two modeling approaches, marginal and conditional, are typically used for ac-
counting for the correlation within a cluster. In the conditional model, the corre-
lation is explicitly induced by a cluster-specific random effect, with the outcomes
of the cluster members being conditionally independent given the random effect.
In the survival context, this model is known as the frailty model, with the ran-
dom frailty term typically assumed to act multiplicatively on the hazard. Many
frailty models have been considered, including gamma, positive stable, inverse
Gaussian, compound Poisson and log-normal. See [17] for a broad review. Under
a frailty model, the regression coefficients are cluster-specific log-hazard ratios. In
the marginal model, by contrast, the correlation is modeled through a multivari-
ate distribution, often involving a copula function, with a specified model for the
marginal hazard functions. The regression coefficients in the marginal model rep-
resent the log-hazard ratios at the population level regardless of which cluster an
individual comes from. The effect is thus “population-averaged.” A comparison of
the conditional and marginal modeling approaches can be found in [34].

Methods exist for case-control family studies under both modeling approaches.
Shih and Chatterjee [31] proposed a semi-parametric quasi-partial-likelihood ap-
proach for estimating the regression coefficients in a bivariate copula model. Their
cumulative hazard estimator requires an iterative solution and thus, so far, the prop-
erties of their estimators have been investigated only by simulation. Moreover, in
the case of multiple relatives for each proband, the relatives were treated in the esti-
mation process as if they were independent, which may lead to loss of efficiency in
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the baseline hazard function estimator. By contrast, a quasi-EM algorithm method
for the popular gamma frailty model is presented in [18], where the baseline haz-
ard function estimator naturally accommodates multiple relatives in a family [19].
However, with this method as well, the properties of the proposed estimators were
studied only by simulation. The Shih–Chatterjee method can be adapted to the
family-specific frailty setting [27], but with the same limitation as for the marginal
model: the lack of large sample theory.

In this work, we develop a new estimation technique for the general semipara-
metric shared frailty model, where the parameters of interest are the regression
coefficients and the frailty parameters. Our method covers any frailty distribution
with finite moments. The estimation procedure for the baseline hazard function
leads to an estimator whose asymptotic properties can be derived and expressed in
a tractable way. Thus, this paper is the first to present an estimation procedure with
rigorous asymptotic theory for a frailty survival model in the case-control family
study setting.

Section 2 presents our model and Section 3 describes our estimation procedure.
Section 4 gives the consistency and asymptotic normality results. In Section 5,
we describe an extension of our method for the case where the proband observa-
tion times are subject to a certain restriction that can arise in some studies. Sec-
tion 6 presents simulation results. In Section 7 we illustrate our method with a
case-control family study of early onset breast cancer. Section 8 provides a short
discussion. Section 9 provides the details of the asymptotic theory. Throughout the
paper, certain details have been omitted for brevity. These details are given in an
expanded version of this paper, which is available at the Front for the Mathematics
ArXiv under Statistics, publication number: math.ST/0703300.

2. Notation and model formulation. We consider a matched case-control
family study where one case proband is age-matched with one control proband,
and an array of risk factors is measured on the case and control probands and their
relatives. Each matched set contains one case family and one control family, and
there are n i.i.d. matched sets. Let T 0

ij and Cij denote the age at disease onset
and age at censoring, respectively, for individual j of family i, i = 1, . . . ,2n, j =
0,1, . . . ,mi , where j = 0 corresponds to the proband. Following [28] (page 187),
we regard mi as a random variable over {1, . . . ,m} for some m, and build up the
remainder of the model conditional on mi . Define δij = I (T 0

ij ≤ Cij ) to be the

failure indicator and Tij = min(T 0
ij ,Cij ) to be the observed follow-up time for in-

dividual ij . We assume that a p-vector of covariates is observed on all subjects, and
let Zij denote the value of the time-independent covariate vector for individual ij .
In addition, we associate with family i an unobservable family-level covariate ωi ,
the “frailty,” which induces dependence among family members. The conditional
hazard function for proband i, given the family frailty ωi , is assumed to take the
form

λi0(t |Zi0,ωi) = ωiλ0(t) exp(βT Zi0), i = 1, . . . ,2n.(1)

http://arxiv.org/math.ST/0703300
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The conditional hazard function for relative ij , j = 1, . . . ,mi , given the family
frailty ωi , is assumed to take the form

λij (t |Zij ,ωi) = ωiλ0(t) exp(βT Zij ), i = 1, . . . ,2n; j = 1, . . . ,mi.(2)

Here β is a p-vector of unknown regression coefficients, and λ0 is a conditional
baseline hazard of unspecified form. The above model implies that the proband and
the relatives have a common conditional baseline hazard function λ0, and that all
the dependence between the proband and the relatives in a given family is due to
the frailty factor ωi . This is the standard formulation of the frailty survival model;
see, for example, [9, 10, 17] and [26]. Hence, the conditional hazard function of a
relative, given Zij , ωi and the proband data, is a function of only Zij and ωi . The
random variable ωi is assumed to have a density f (ω) ≡ f (ω; θ), where θ is an
unknown parameter. For simplicity, we assume that θ is a scalar, though the vector
case could be developed in a similar manner.

We put γ = (βT , θ)T , and let γ ◦ = (β◦T , θ◦)T denote the true value of γ . The
objective is to estimate γ and the cumulative baseline hazard �0(t) = ∫ t

0 λ0(u) du.
Let �◦

0(t) denote the true value of �0. Further, let δiR = (δi1, . . . , δimi
), TiR =

(Ti1, . . . , Timi
) and ZiR = (ZT

i1, . . . ,ZT
imi

)T .
We assume that Zij is bounded, and that the parameter γ lies in a compact

subset G of R
p+1 containing an open neighborhood of γ ◦. These two assumptions

imply that βT Zij is bounded. In addition, we assume the following:

1. Conditional on {Zij }mi

j=0 and ωi , the censoring times are independent of the
failure times and noninformative for ωi and (β,�0). In addition, the frailty ωi

is independent of {Zij }mi

j=0.
2. The effect of the covariates on the observed time is subject-specific, that

is Pr(Tij , δij |Zi0,ZiR,ωi) = Pr(Tij , δij |Zij ,ωi). This implies Pr(Tij , δij |Zi0,

ZiR) = Pr(Tij , δij |Zij ) even without frailty.

A number of additional technical assumptions are listed in Section 9.
Following [18] and [31], the likelihood function for the data can be written as

L =
2n∏
i=1

f (TiR, δiR,ZiR,Zi0|Ti0, δi0)

(3)

=
2n∏
i=1

f (TiR, δiR|ZiR,Zi0, Ti0, δi0) × f (ZiR|Zi0) × f (Zi0|Ti0, δi0).

Since f (ZiR|Zi0) does not depend on the parameters of interest (β,�0, θ), this
term will be ignored. In the following subsections we consider the other two terms
in (3).
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2.1. The likelihood for the proband data. To account for the matching of
age of onset, as in [18] and [31], the likelihood function of the proband data,∏2n

i=1 f (Zi0|Ti0, δi0), is constructed based on the retrospective likelihood for
the standard matched case-control study [29]. We express this likelihood in
terms of the marginal survival function Si0(t) = Pr(Ti0 > t |Zi0) = ∫

Pr(Ti0 >

t |Zi0,ω)f (ω)dω. In our setting we have n one-to-one matched sets. Based on
the marginal survivor function, the marginal hazard function can be written as

λi0(t |Zi0) = λ0(t) exp(βT Zi0)
μ1i (t;γ ,�0)

μ0i (t;γ ,�0)
,

where

μki(t;γ ,�0) =
∫

ωk exp{−ωHi0(t)}f (ω)dω, k = 0,1,2,

and Hi0(t) = �0(t) exp(βT Zi0). We arrange the notation so that the first n families
are the case families and the r th case family, r = 1, . . . , n, is matched with the
(n + r)th control family. The likelihood for the proband data is then replaced by
the following conditional likelihood:

L(1) =
n∏

r=1

exp(βT Zr0)ξ10r (Tr0;γ ,�0)∑
j∈{r,n+r} exp(βT Zj0)ξ10j (Tj0;γ ,�0)

,(4)

where ξkk′i (t;γ ,�0) = μki(t;γ ,�0)/μk′i (t;γ ,�0) for k, k′ = 0,1,2. Given (4),
the likelihood score functions U

(1)
l (γ ,�0) = ∂ logL(1)/∂βl, l = 1, . . . , p, and

U
(1)
p+1(γ ,�0) = ∂ logL(1)/∂θ can be obtained by straightforward differentiation.

The detailed formulas are presented in the expanded paper.
Under the gamma frailty model, we have μ1i (t;γ ,�0)/μ0i (t;γ ,�0) = {θ ×

Hi0(t) + 1}−1, and so the likelihood function (4) corresponds to that presented in
[18] in the case of one-to-one matching. Extension to matching of multiple cases
or multiple controls are straightforward, see, for example, [4].

2.2. The likelihood for the data from the relatives. Let Nij (t) = δij I (Tij ≤ t),
j = 1, . . . ,mi , Ni·(t) = ∑mi

j=1 Nij (t), Hij (t) = �0(Tij ∧ t) exp(βT Zij ), a ∧ b =
min{a, b}, j = 1, . . . ,mi and Hi·(t) = ∑mi

j=1 Hij (t) and let τ be the maximum
follow-up time. The likelihood of the data from the relatives then can be written as

L(2) =
2n∏
i=1

∫ mi∏
j=1

{λij (Tij |Ti0, δi0,Zi0,Zij ,ω)}δij Sij (Tij |Ti0, δi0,Zi0,Zij ,ω)

× f (ω|Ti0, δi0,Zi0) dω(5)

=
2n∏
i=1

mi∏
j=1

{λ0(Tij )e
βT Zij }δij

2n∏
i=1

∫
ωNi·(τ )e−ωHi·(τ )f (ω|Ti0, δi0,Zi0) dω.
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Here, by a Bayes theorem argument,

f (ω|Ti0, δi0,Zi0) = ωδi0 exp(−ω�0(Ti0)e
βT Zi0)f (ω)∫

ω̃δi0 exp(−ω̃�0(Ti0)eβT Zi0)f (ω̃) dω̃
.(6)

Given (5), the likelihood score functions U
(2)
l (γ ,�0) = ∂ logL(2)/∂βl, l =

1, . . . , p and U
(2)
p+1(γ ,�0) = ∂ logL(2)/∂θ can be obtained by straightforward

differentiation. The detailed formulas are presented in the expanded paper.

3. The proposed approach. We focus first on estimating the baseline cumu-
lative hazard function �0(t). Let Yij (t) = I (Tij ≥ t) and let Ft denote the σ -
algebra generated by (Ti0, δi0,Zi0) plus the entire observed history of the relatives
up to time t :

Ft = σ
(
Ti0, δi0,Zi0,Nij (u), Yij (u),Zij ; i = 1, . . . ,2n; j = 1, . . . ,mi;0 ≤ u ≤ t

)
.

It is worth noting that the observational times Ti0 for probands can be greater than
time t and thus the filtration Ft may include probands’ failure times or censoring
times that are beyond t , a feature that is unique for case-control family data. In
regard to the relatives, however, Ft includes only information up to time t .

By the innovation theorem ([3], Theorem 3.4), the stochastic intensity process
for Nij (t), i = 1, . . . ,2n, j = 1, . . . ,mi , with respect to Ft is given as follows [11]
and [28]:

λ0(t) exp(βT Zij )Yij (t)ψi(t−,γ ,�0),(7)

where, using (6),

ψi(t,γ ,�0) = E[ωi |Ft ] =
∫

ωNi·(t)+1 exp(−ωHi·(t))f (ω|Ti0, δi0,Zi0) dω∫
ωNi·(t) exp(−ωHi·(t))f (ω|Ti0, δi0,Zi0) dω

=
∫

ωNi·(t)+1+δi0 exp(−ω{Hi·(t) + Hi0(Ti0)})f (ω)dω∫
ωNi·(t)+δi0 exp(−ω{Hi·(t) + Hi0(Ti0)})f (ω)dω

.

Define (for 0 ≤ r ≤ m + L and h ≥ 0)

ψ∗(r, h) =
∫

wr+1e−hwf (w)dw∫
wre−hwf (w)dw

.(8)

Some salient properties of ψ∗(r, h) are noted in Section 9.1. With this definition,
we have ψi(t,γ ,�0) = ψ∗(Ni·(t) + δi0,Hi·(t) + Hi0(Ti0)).

Let τg , g = 1, . . . ,G, denote the gth ordered failure time of the relatives and
assume that dg failures were observed at time τg . In theory, since we are dealing
with continuous survival distributions, dg = 1 for all g, but we express the fol-
lowing estimators in a form that allows for a modest level of ties. A Breslow-type
estimator of the cumulative baseline hazard function, with a jump at each observed
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failure time among the relatives, can be formulated in a natural way similarly to
Shih and Chatterjee [31], with the gth jump given by

dg∑2n
i=1 ψi(τg−1,γ ,�0)

∑mi

j=1 Yij (τg) exp(βT Zij )
.(9)

However, ψi(t,γ ,�0) could be a function of �0(Ti0) and Ti0 could be greater
than t . Consequently, the above Breslow formula for the jump in the baseline haz-
ard estimator at time t will often involve values of �0 for times beyond time t .
For example, under the gamma frailty model with expectation 1 and variance θ ,
ψi(t,γ ,�0) = {θ−1 +Ni·(t)+ δi0}{θ−1 +Hi·(t)+Hi0(Ti0)}−1. An iterative pro-
cedure is thus required to compute the estimator. In addition, because of this esti-
mator’s complicated structure, its asymptotic properties have not been established.

We propose instead to estimate the baseline hazard function using a non-
iterative two-stage procedure. Let �max be some known (possibly large) upper
bound for �◦

0(t). Define ψ̄(r, h) = ψ∗(r, h∧ hmax), with hmax = meν�max, where
ν is an upper bound on |βT Zij |. Further, define ψ̄i(t,γ ,�) = ψ̄(Ni(t),Hi·(t,γ ,

�)). The first-stage estimator is then defined as a step function whose gth jump is
given by

��̃0(τg) = d∗
g∑2n

i=1 I (Ti0 < τg)ψ̄i(τg−1,γ , �̃0)
∑mi

j=1 Yij (τg) exp(βT Zij )
,(10)

with

d∗
g =

2n∑
i=1

I (Ti0 < τg)

mi∑
j=1

dNij (τg).

The formula (10) is of the same form as (9), with the following changes: (a) ψi is
replaced by ψ̄i for technical reasons, (b) more substantively, in computing the jump
at each failure time τg , we include only relatives whose proband’s observation time
is less than τg . We thereby avoid the problem with (9) that was described above,
and hence avoid the need for an iterative optimization process. Since (10) excludes
some of the available data, these benefits are attained at the expense of a loss in
efficiency. We therefore follow up with a second stage in order to recoup efficiency.

The second-stage estimator is defined as a step function whose gth jump is given
by

��̂0(τg) = dg∑2n
i=1 ψ̃i(τg−1,γ )

∑mi

j=1 Yij (τg) exp(βT Zij )
,(11)

where ψ̃i(t,γ ) is defined analogously to ψ̄i(t,γ ,�0), with �0(Ti0) replaced by
�̃0(Ti0) if Ti0 ≥ t and by �̂0(Ti0) otherwise. The large-sample properties of �̂0(t)

will be determined by those of �̃0(t). The estimator �̃0(t,γ ) is not necessarily
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bounded by �max, but if desired, we can replace it by min{�̃0(t,γ ),�max} without
affecting the asymptotics.

For estimating (β, θ) we use a pseudo-likelihood approach: in the score func-
tions based on L(1) and L(2), we replace the unknown �0 by �̂0. Thus, the
score function corresponding to βl (for l = 1, . . . , p) is given by Ul(γ , �̂0) =
n−1{U(1)

l (γ , �̂0) + U
(2)
l (γ , �̂0)}, and the estimating function for θ is given by

Up+1(γ , �̂0) = n−1{U(1)
p+1(γ , �̂0) + U

(2)
p+1(γ , �̂0)}. To summarize, our proposed

estimation procedure is as follows. (1) Provide an initial value for γ . (2) For the
given values of γ , estimate �0 using (10) and (11). (3) For the given value of �0,
estimate γ . (4) Repeat Steps 2 and 3 until convergence is reached with respect to
�̂0 and γ̂ . Hence, instead of having two iterative processes, within each iteration
between γ̂ and �̂0 to iterate also for estimating �0 itself (as in [31]), we pro-
pose one iterative process between γ̂ and �̂0. By eliminating the iterative process
for estimating the baseline hazard function we are able to provide the asymptotic
theory of our estimators, in contrast to [18] and [31].

4. Asymptotic properties. We show that γ̂ is a consistent estimator of γ ◦ and
that

√
n(γ̂ − γ ◦) is asymptotically mean-zero multivariate normal. In this section,

we present a broad outline sketch of the argument. In Section 9, we provide the
details of the proofs, including a detailed list of the technical conditions assumed.
The arguments are patterned after those of [14] and [36], but with considerable
expansion, as will be elaborated in Section 9.

Consistency is shown through the following steps.

CLAIM A1. �̃0(t,γ ) converges in pr. to some function �∗
0(t,γ ) uniformly in

t and γ . The function �∗
0(t,γ ) satisfies �∗

0(t,γ
◦) = �◦

0(t).

CLAIM A2. �̂0(t,γ ) converges in pr. to some function �0(t,γ ) uniformly in
t and γ . The function �0(t,γ ) satisfies �0(t,γ

◦) = �◦
0(t).

CLAIM B. U(γ , �̂0(·,γ )) converges in pr. uniformly in t and γ to a limit
u(γ ,�0(·,γ )).

CLAIM C. There exists a unique consistent (in pr.) root to U(γ̂ , �̂0(·, γ̂ )) = 0.

It should be emphasized that in Claims A1 and A2 the limits coincide at the true
parameter value γ ◦. The proofs of Claims A1, A2 and B involve empirical process
and function-space compactness arguments, while Claim C is shown using Foutz’s
theorem [8] on consistency of maximum likelihood type estimators.

Asymptotic normality is shown by decomposing U(γ̂ , �̂0(·, γ̂ )) = 0 as

U(γ ◦,�◦
0) + [U(γ ◦, �̂0(·,γ ◦)) − U(γ ◦,�◦

0)]
+ [U(γ̂ , �̂0(·, γ̂ )) − U(γ ◦, �̂0(·,γ ◦))] = 0.
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In Section 9 we analyze each of the above three terms and prove that
√

n(γ̂ − γ ◦)
has an asymptotic mean-zero multivariate normal distribution. Although it is pos-
sible to develop a consistent closed-form sandwich estimator for the asymptotic
covariance matrix, we do not present this estimator because it is too complicated
to be practically useful. Instead, as discussed in Section 6, we recommend boot-
strap standard-error estimates.

In Section 9 we also show the uniform consistency and weak convergence of
the cumulative baseline hazard function estimator �̂0(t, γ̂ ). Such results were not
presented in [14] or [36].

5. Extension to restricted sampling of probands. A key assumption in our
procedure for estimating �0 is that the support of the probands’ observation times
and that of relatives’ observation times have the same lower limit, which is des-
ignated (without loss of generality) as time zero. In some applications, however,
the probands’ observed times are restricted to some range [s0, s1] with s0 > 0. For
example, a multi-center case-control breast cancer study, where ages of cases and
controls are restricted between ages 35–64, is presented in [25]. In a design of this
form, where the probands’ observed times are left-restricted by s0 and the rela-
tives’ failure times are unrestricted, �0 will be underestimated by our two-stage
procedure. But this bias can be easily corrected by first estimating �0(s0).

We present here the resulting three-stage estimator for the left-restricted de-
sign. Let ��̃0{τg,�0(s0)}, and let ��̂0{τg,�0(s0)} be defined analogously to
��̃0(τg) and ��̂0(τg), with �0(Ti0) = �0(s0) + ∑

τg∈[s0,Ti0] �0(τg). The esti-

mator �̂0(s0) is defined as the root of∑
τg∈[0,s0]

��̂0{τg,�0(s0)} − �0(s0) = 0.(12)

The root can be found by simple univariate Newton–Raphson iteration. This com-
pletes the first stage. The second stage involves calculating ��̃0{τg, �̂0(s0)},
g = 1, . . . ,G, using the formula (10). In the third stage, we use the results of
the second stage and the formula (11) to calculate the final estimate ��̂0(τg),
g = 1, . . . ,G. In applying (11), we replace �0(Ti0) by �̃0{Ti0, �̂0(s0)} if Ti0 ≥ τg

and by �̂0(Ti0) otherwise.
In Section 6 below, we present simulation results for this estimator. In theory,

the asymptotic properties of the three-stage procedure could be worked out via an
extension of the arguments for the two-stage procedure, but the algebra becomes
very complicated. We hope to develop asymptotic theory for the left-restricted
design in future work.

6. Simulation results—Gamma frailty. We have performed a simulation
study to evaluate the finite sample performance of the proposed method and com-
pare it with existing methods. One of the most extensively used frailty distribu-
tions is the gamma distribution: customarily, the gamma distribution with expec-
tation 1 and variance θ . Under this model, the variance parameter θ quantifies
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TABLE 1
Simulation results: 500 control proband matched with 500 case probands; one relative for each

proband; β = 0.693, �0(t) = t , θ = 2.0, 500 samples

Proposed method Hsu et al. Shih and Chatterjee

Empirical Empirical Empirical
Mean standard error Mean standard error Mean standard error

β̂ 0.706 0.197 0.697 0.201 0.698 0.182
θ̂ 2.003 0.312 1.986 0.302 1.992 0.303
�̂0(0.2) 0.201 0.034 0.204 0.030 0.202 0.029
�̂0(0.4) 0.402 0.063 0.407 0.058 0.403 0.054
�̂0(0.6) 0.603 0.095 0.612 0.090 0.605 0.084
�̂0(0.8) 0.809 0.136 0.820 0.131 0.811 0.122

the heterogeneity of risk among families, with larger values of θ corresponding
to stronger within-family dependence. In addition, the gamma frailty model can
be re-expressed in terms of the Clayton–Oakes copula-type model [6, 27]. More-
over, the cross-ratio, introduced by Oakes [27] as a local measure of association
between survival times, is constant on the support of the failure time distribution
and equals 1 + θ . Finally, the gamma frailty model is convenient mathematically,
because it admits a closed-form representation of the marginal survival distribu-
tions. These features make the gamma frailty model very popular. We therefore
chose the gamma frailty model as the framework for our simulation study.

Simulation results are based on 500 control probands matched to 500 case
probands, with one relative sampled for each proband. We considered a single
U [0,1] distributed covariate with β = ln(2), �0(t) = t , θ = 2 and a U [0,1] cen-
soring variable, yielding a censoring rate among the relatives of approximately
60%. In Table 1 we compare the following three estimates: the proposed estimate
with the two-stage procedure for �0, the estimate of [18] and a modified version of
[31] estimate, with their method adapted to the gamma frailty model. Results are
based on 500 simulated data sets. The efficiency difference between our two-stage
estimator and that of Shih and Chatterjee is very small.

For our method, we also performed simulations for two additional settings. In
both settings, we took β = 0 and θ = 3. The first setting involved a censoring distri-
bution of U [0,4] and a covariate with a U [0,4] distribution; the second involved a
censoring distribution of U [0,0.1] and a covariate with a U [0,1] distribution. The
respective overall censoring rates in these two settings were approximately 30%
and 90%. To construct confidence intervals, we used a bootstrap approach. In the
setting of censored survival data, the usual nonparametric bootstrap is problem-
atic because it leads to a substantial proportion of tied survival times. We there-
fore used the weighted bootstrap approach of [22]. For the weighted bootstrap,
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TABLE 2
Simulation results for the proposed estimators: 500 control proband matched with 500 case

probands; one relative for each proband; �0(t) = t ; 2000 samples

β = 0.0 β = 0.693

Empirical Coverage Empirical Coverage
θ Estimator Mean standard error rate Mean standard error rate

90% censoring rate
2.0 β̂ −0.013 0.217 93.5 0.694 0.200 96.0

θ̂ 2.127 0.872 96.0 2.082 0.667 94.8
�̂0(0.02) 0.020 0.006 94.2 0.020 0.005 95.2
�̂0(0.04) 0.041 0.010 94.7 0.040 0.010 95.2
�̂0(0.06) 0.061 0.015 94.8 0.060 0.014 96.1
�̂0(0.08) 0.081 0.020 95.0 0.080 0.019 96.1

3.0 β̂ −0.025 0.226 91.7 0.689 0.206 95.4
θ̂ 3.126 1.142 94.2 3.172 0.964 95.7

�̂0(0.02) 0.020 0.005 95.7 0.020 0.005 94.8
�̂0(0.04) 0.041 0.012 95.8 0.040 0.010 95.9
�̂0(0.06) 0.062 0.016 96.1 0.060 0.014 96.5
�̂0(0.08) 0.082 0.021 95.9 0.080 0.019 95.7

30% censoring rate
2.0 β̂ 0.007 0.047 95.5 0.703 0.063 96.5

θ̂ 2.013 0.247 95.3 1.993 0.196 95.5
�̂0(0.2) 0.200 0.037 95.5 0.197 0.045 94.5
�̂0(0.4) 0.397 0.073 95.0 0.394 0.085 94.0
�̂0(0.6) 0.596 0.110 95.1 0.591 0.125 94.0
�̂0(0.8) 0.794 0.147 95.5 0.788 0.166 94.1

3.0 β̂ 0.006 0.048 97.3 0.703 0.061 97.2
θ̂ 3.009 0.370 95.3 2.999 0.314 96.0

�̂0(0.2) 0.200 0.040 94.0 0.197 0.047 94.4
�̂0(0.4) 0.399 0.078 94.1 0.392 0.091 94.0
�̂0(0.6) 0.597 0.116 95.0 0.586 0.133 94.9
�̂0(0.8) 0.796 0.155 95.6 0.792 0.176 95.0

a sample of 2n independent and identically distributed weights from the unit ex-
ponential distribution was generated for each bootstrap sample. Let ξ1, . . . , ξ2n

be the standardized weights after dividing each weight by the average weight.
Then, in the estimating functions, for any given function h the empirical mean
n−1 ∑2n

i=1 h(Ti, δi,Zi ) is replaced by its corresponding weighted empirical mean
n−1 ∑2n

i=1 ξih(Ti, δi,Zi). This weighted bootstrap procedure gives valid inference
for all parameters under right-censored univariate failure times [22].

Results for the two-stage procedure for �0 are presented in Table 2 for various
levels of censoring. We present the mean, the empirical standard error, and the
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TABLE 3
Simulation results of left-restricted data: 500 control proband matched with 500 case probands; one

relative for each proband; s0 = 0.1, β = 0.693, �0(t) = t , θ = 2.0, 500 samples

Proposed method Hsu et al. Shih and Chatterjee

Empirical Empirical Empirical
Mean standard error Mean standard error Mean standard error

β̂ 0.735 0.214 0.698 0.234 0.694 0.170
θ̂ 2.040 0.336 2.080 0.338 2.080 0.337
�̂0(0.2) 0.195 0.049 0.198 0.034 0.198 0.031
�̂0(0.4) 0.392 0.090 0.402 0.068 0.401 0.062
�̂0(0.6) 0.589 0.129 0.604 0.102 0.603 0.092
�̂0(0.8) 0.786 0.172 0.813 0.143 0.810 0.128
�̂0(s0) 0.098 0.025 — — — —

coverage rate of the 95% weighted bootstrap confidence interval. The results are
based on 50 bootstrap samples for each of the 2000 simulated data sets of each
configuration. Our estimates perform well in terms of bias and coverage probabil-
ity.

To study the case of left-restricted data, we considered a configuration similar to
that of Table 1, but with the probands observation times restricted to be > 0.1. In
Table 3, we present results for our three-stage estimator as well as for the methods
of [18] and [31]. We see that estimating �0(s0) leads to modest efficiency loss in
�̂0 relative to the other two methods.

7. Example. We apply our method to the breast-cancer study mentioned in
the Introduction. Various risk factors were measured on probands and their rela-
tives. For illustrative purposes we consider age at first full-term pregnancy with
the relatives of the probands being the mothers. The following analysis is based
on 437 breast-cancer case probands matched with 437 control probands and a to-
tal of 874 mothers. The number of mothers who had breast cancer was 70 among
the case families and 35 among the control families. The number of women whose
first live birth occurred before age 20 was 142 among the probands and 181 among
the mothers. We use the gamma frailty model with expectation 1 and variance θ .
Three estimation procedures are considered: our proposed method, the estimate
of the Hsu et al. [18] method and a modified version of the Shih and Chatterjee
[31] estimate. For our proposed method, the two-stage procedure for �0 is used
since the age range of the mothers with breast cancer was 20–76 and the age range
of the probands was 22–44. Table 4 presents the regression coefficient parame-
ter estimate β̂ , the dependency parameter estimate, θ̂ , and �̂0 at ages 40, 50, 60
and 70 years, along with their respective bootstrap standard errors. The proposed
approach and that of Shih and Chatterjee yielded similar dependency estimates
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TABLE 4
Analysis of a case-control family study of breast cancer

Proposed method Hsu et al. Shih and Chatterjee

Bootstrap Bootstrap Bootstrap
Mean standard error Mean standard error Mean standard error

β̂ −0.440 0.158 −0.484 0.216 −0.476 0.168
θ̂ 0.952 0.443 0.889 0.443 0.944 0.460
�̂0(40) 0.005 0.002 0.005 0.002 0.005 0.002
�̂0(50) 0.022 0.006 0.023 0.006 0.023 0.006
�̂0(60) 0.048 0.010 0.051 0.010 0.049 0.010
�̂0(70) 0.091 0.016 0.095 0.016 0.092 0.016

with the proposed approach being moderately more efficient. Hsu et al.’s approach
gave a slightly lower dependence estimate. The regression coefficient estimates of
Hsu et al. and that of Shih and Chatterjee are similar, with the latter being slightly
more efficient. The proposed approach yielded a slightly lower covariate effect.
The cumulative baseline hazard estimates are similar under the three estimation
techniques. The results of all the three methods imply that women who had their
first full-term pregnancy before age 20 have a reduced risk of developing breast
cancer, supporting the observation that breast cancer risk is reduced by early first
full-term pregnancy (e.g., [7], among others). The estimates of the dependency pa-
rameter imply that after adjusting for the first full-term pregnancy, there remains a
significant dependency between the ages of onset for mothers and daughters with
cross ratio (1 + θ ) close to 2.

8. Discussion. In this work we have presented a new estimator for matched
case-control family study survival data under a frailty model, allowing an arbi-
trary frailty distribution with finite moments. Rigorous large sample theory has
been provided. Simulation results under the popular gamma frailty model indicate
that the proposed procedure provides estimates with minimal bias and confidence
intervals with the appropriate coverage rate. Moreover, our estimators were seen
to be essentially identical in efficiency to estimators based on the more complex
approach of Shih and Chatterjee [31].

Rigorous large sample theory has been provided for age-unrestricted sampling
of cases and controls. For age-restricted sampling, the asymptotic theory could
be worked out largely following the arguments for the two-stage estimator but the
algebra becomes very complicated. This development is a potential topic for future
work.

Having suggested a model with an arbitrary frailty distribution with finite mo-
ments, we offer some remarks on how to choose the frailty distribution and
the effect of this choice on the parameter estimates. Hougraard [17] provides a
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comprehensive discussion of the theoretical properties and the fit of the follow-
ing distributions: gamma, positive stable, power variance function (PVF), inverse
Gaussian and lognormal. Hsu et al. [20] show by simulation that the biases in the
marginal regression estimates and the marginal hazard function are generally 10%
or lower under the assumed gamma distribution and misspecification of the frailty
distribution. This suggests that the gamma frailty model can be a practical choice
if the marginal parameters are of primary interest. However, when the dependence
function is also of interest, a correct specification of the frailty distribution is cru-
cial. A general diagnostic approach to check the bivariate association structure of
clustered failure times is given in [13]. Additional tests and graphical procedures
for checking the dependence structure of clustered failure-time data can be found
in [5, 12, 30, 32, 33]. These procedures, however, are not directly applicable to the
retrospective setting we deal with here; extension of the procedures to this setting
will be needed.

9. Asymptotic theory: Conditions and proofs. This section presents the
technical conditions we assume for the asymptotic results and the proofs of these
results. The pattern of the argument is as in [14, 35] and [36], but considerable
extension is required, mainly because of the two-stage cumulative baseline haz-
ard function estimator for the case-control family data. A pseudo full likelihood
estimation procedure for prospective survival data with a general semiparametric
shared frailty model is given by [14] and [36]. A pseudo partial likelihood method
for semiparametric survival model with errors in covariates is provide by [35]. We
focus here on the added arguments needed for the present setting, and refer back to
[35] and [36] for the other derivations. Briefly, the main extensions required in this
work are as follows: (i) In showing consistency of �̃0(·,γ ), the proof of Claim A
in [36] cannot be applied directly since the quantity

2n∑
i=1

I (Ti0 < t)ψ̄i(t−,γ ,�)

mi∑
j=1

Yij (t) expβT Zij ,

which is the denominator of the term for the jumps in �̃0, tends to 0 as t → 0.
(ii) For the asymptotic normality of

√
n(γ̂ − γ ◦), we need a workable repre-

sentation of the baseline hazard function estimators (10) and (11). The approach
of [36] cannot be applied directly since �̃0(t) − �◦

0(t) involves the “vanishing-
denominator” problem mentioned above. For �̂0(t) − �◦

0(t) we use the repre-
sentation of �̃0(t) − �◦

0(t) along with a recursive solution only for the relatives’
failure times.

9.1. Assumptions, background and preliminaries. For the asymptotic theory,
we make a number of assumptions. Several of these assumptions have already been
listed in the main text. Below we list the additional assumptions.

1. There is a maximum follow-up time τ ∈ (0,∞), with E[∑mi

j=1 Yij (τ )] = y∗ > 0
∀i.
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2. The frailty random variable ωi has finite moments up to order (m + 2).
3. The baseline hazard function λ◦

0(t) is bounded over [0, τ ] by some fixed (but
not necessarily known) constant λmax.

4. The function f ′(w; θ) = (d/dθ)f (w; θ) is absolutely integrable.
5. For any given family, there is a positive probability of at least two failures.
6. Defining π(s) = E[I (Ti0 < s)

∑mi

j=1 Yij (s)], we have

ξr(u) ≡
∫ u

0

λ◦
0(s)

π(s)r
ds < ∞ for all u ∈ [0, τ ] and r = 1,2,3.(13)

This assumption is needed in the analysis of the first-stage estimator. For r = 1,
it parallels Assumption 5.4 of [21].

7. The matrix [(∂/∂γ )U(γ , �̂0(·,γ ))]|γ=γ ◦ is invertible with probability going
to 1 as n → ∞. It should be noted that a general proof of invertibility is in-
tractable, but given the data, one can easily check that numerically the matrix
is invertible.

With ψ∗(r, h) as in (8), we define ψ∗
min(h) = min0≤r≤m ψ∗(r, h) and ψ∗

max(h)×
max0≤r≤m ψ∗(r, h). It is easily seen that ψ∗

max(h) is finite and ψ∗
min(h) is strictly

positive. The two lemmas below correspond to Lemmas 1 and 3 of [36].

LEMMA 1. The function ψ∗(r, h) is decreasing in h. Hence for all γ ∈ G and
all t , ψi(γ ,�, t) ≤ ψ∗

max(0) and ψi(γ ,�, t) ≥ ψ∗
min(meν�(t)).

LEMMA 2. For any ε > 0, we have sups∈[ε,τ ] |�̃0(s,γ
◦) − �̃0(s−,γ ◦)| → 0

as n → ∞.

9.2. Consistency. As indicated in Section 4, the consistency proof proceeds in
several stages.

CLAIM A1. �̃0(t,γ ) converges in probability to some function �∗
0(t,γ ) uni-

formly in t and γ . The function �∗
0(t,γ ) satisfies �∗

0(t,γ
◦) = �◦

0(t).

PROOF. We can write �̃0(t,γ ) as

�̃0(t,γ )
(14)

=
∫ t

0

n−1 ∑2n
i=1 I (Ti0 < s)

∑mi

j=1 dNij (s)

n−1 ∑2n
i=1 I (Ti0 < s)ψ̄i(s−,γ , �̃)

∑mi

j=1 Yij (s) exp(βT Zij )
.

The proof builds here on that of the corresponding Claim A in [36]. The main
point needing attention here is the fact that, because of the indicators I (Ti0 < s),
the denominator of (14) tends to 0 as s → 0.
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Define, in parallel with [36],

�n(t,γ ,�, ε) =
∫ t

ε

n−1 ∑2n
i=1 I (Ti0 < s)

∑mi

j=1 dNij (s)

n−1 ∑2n
i=1 I (Ti0 < s)ψ̄i(s−,γ ,�)

∑mi

j=1 Yij (s) exp(βT Zij )

and

�(t,γ ,�, ε)

=
∫ t

ε

E[I (Ti0 < s)ψ̄i(s−,γ ,�◦
0)

∑mi

j=1 Yij (s) exp(β◦T Zij )]
E[I (Ti0 < s)ψ̄i(s−,γ ,�)

∑mi

j=1 Yij (s) exp(βT Zij )]
λ◦

0(s) ds.

We write �n(t,γ ,�) for �n(t,γ ,�,0) and �(t,γ ,�) for �(t,γ ,�,0). By def-
inition, �̃0(t,γ ) satisfies the equation �̃0(t,γ ) = �n(t,γ , �̃0(·,γ )).

REMARK. In [36], we had �n(t,γ ,�) → �(t,γ ,�) a.s. as n → ∞, uni-
formly over t ∈ [0, τ ], γ ∈ G, and � in a certain set. We could not obtain such a
result here; the argument of [2] fails in the neighborhood of zero because of the
“vanishing denominator” problem. This is why we give only an in pr. consistency
result rather than an a.s. result.

Next, define

qγ (s,�) = E[I (Ti0 < s)ψ̄i(s−,γ ,�◦
0)

∑mi

j=1 Yij (s) exp(β◦T Zij )]
E[I (Ti0 < s)ψ̄i(s−,γ ,�)

∑mi

j=1 Yij (s) exp(βT Zij )]
λ◦

0(s).

This function qγ (s,�) has the same properties as its counterpart in [36]: these
properties are not interfered with by the insertion of the indicator function
I (Ti0 < s). In particular, from Lemma 1 we have

[ψ̄i(s−,γ ,�◦
0)/ψ̄i(s−,γ ,�)] ≤ [ψ∗

max(0)/ψ∗
min(hmax)].

This leads to a bound on qγ (s,�). In addition, the function qγ (s,�) has the fol-
lowing Lipschitz-like property:

|qγ (s,�1) − qγ (s,�2)| ≤ K sup
0≤u≤s

|�1(u) − �2(u)|.

Hence, by [15] (Theorem 1.1), the equation �(t) = �(t,γ ,�) has a unique solu-
tion, which we denote by �∗

0(t,γ ). The claim then is that �̃0(t,γ ) converges in
pr. (uniformly in t and γ ) to �∗

0(t,γ ).
We now define �̃0(t,γ , ε) to be the solution of �̃0(t,γ , ε) = �n(t,γ , �̃0(·,

γ ), ε), starting from �̃0(ε,γ , ε) = 0. For t < ε we set �̃0(t,γ , ε) = 0. Simi-
larly, we define �∗

0(t,γ , ε) to be the solution of �0(t,γ , ε) = �(t,γ ,�0(·,γ ), ε),
starting from �0(ε,γ , ε) = 0, and set �∗

0(t,γ , ε) = 0 for t < ε. An induc-
tion argument similar to that in the proof of [15] (Theorem 1.1) shows that
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|�∗
0(t,γ , ε) − �∗

0(t,γ )| ≤ eK�0(ε,γ ), where K is the Lipschitz constant for
qγ (s,�). We thus have

sup
γ∈G, t∈[0,τ ]

|�∗
0(t,γ , ε) − �∗

0(t,γ )| → 0 as ε → 0.(15)

Now, for any given ε > 0, there is no “vanishing denominator” problem on the
interval [ε, τ ]. Hence, the argument in [36] goes through as is, and we get the
following result: for any ε > 0,

sup
γ∈G,t∈[ε,τ ]

|�̃0(t,γ , ε) − �∗
0(t,γ , ε)| → 0 as n → ∞ a.s.(16)

(and hence in probability). In fact, in the supremum above, we can replace [ε, τ ]
by [0, τ ], since �̃0(t,γ , ε) = �0(t,γ , ε) = 0 for t < ε.

Our aim now is to show that supγ∈G,t∈[0,τ ] |�̃0(t,γ ) − �∗
0(t,γ )| → 0 in pr. as

n → ∞. Now

|�̃0(t,γ ) − �∗
0(t,γ )| ≤ |�̃0(t,γ ) − �̃0(t,γ , ε)|

+ |�̃0(t,γ , ε) − �∗
0(t,γ , ε)|(17)

+ |�∗
0(t,γ , ε) − �∗

0(t,γ )|.
The second and third terms are easily dealt with using (15) and (16). It remains to
deal with the first term.

Define

C(s,γ , ε) = 1

n

2n∑
i=1

I (Ti0 < s)ψ̄i(s−,γ , �̃(·,γ , ε))

mi∑
j=1

Yij (s) exp(βT Zij ),

C∗(s,β) = 1

n

2n∑
i=1

I (Ti0 < s)

mi∑
j=1

Yij (s) exp(βT Zij ).

We can then write

�̃0(t,γ ) − �̃0(t,γ , ε) = �̃0(t ∧ ε,γ ) + A(t, ε),(18)

where

A(t, ε) =
∫ t

t∧ε
[C(s,γ ,0)−1 − C(s,γ , ε)−1]

[
1

n

2n∑
i=1

I (Ti0 < s)

mi∑
j=1

dNij (s)

]
.

We deal with the two terms on the right side of (18) in turn. In what follows, we
let R denote a “generic” constant which may vary from one appearance to another,
but does not depend on the unknown parameters or ε.

Denote �(s) = C∗(s,0). It is clear that �̃(t,γ ) ≤ Rϒ(t,γ ), where

ϒ(t,γ ) =
∫ t

0
�(s)−1

[
1

n

2n∑
i=1

I (Ti0 < s)

mi∑
j=1

dNij (s)

]
.
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We can write

ϒ(t,γ ) =
∫ t

0

[
C∗(s,β◦)

�(s)

]
λ◦

0(s) ds +
∫ t

0
�(s)−1

[
1

n

2n∑
i=1

I (Ti0 < s)

mi∑
j=1

dMij (s)

]
,

where Mij is the martingale process corresponding to Nij :

Mij (t) = Nij (t) −
∫ t

0
λ0(u) exp(β◦T Zij )Yij (u)ψi(γ

◦,�◦
0, u−) du.(19)

The first term in ϒ(t,γ ) is clearly bounded by R�◦
0(t). Thus, denoting the

second term by M∗(t), we have

�̃(t,γ ) ≤ R

[
�◦

0(t) + sup
u∈[0,τ ]

|M∗(u)|
]
.(20)

We next examine A(t, ε). We can restrict to t ≥ ε, since A(t, ε) = 0 for t < ε.
Denote �(t) = �̃0(t,γ ) − �̃0(t,γ , ε). Bearing in mind the Lipschitz property
of ψ̄ , we find that

|A(t, ε)| ≤ R

∫ t

ε
|�(s−)|dϒ(s).

Note that, for t ≥ ε, dA(t, ε) = d�(t). Thus, a simple induction and some addi-
tional simple manipulations lead to the following, where we employ the symbol P
to denote product integral and use the fact that �(ε) = �̃(ε,γ ):

|A(t, ε)| ≤ |�(ε)|P t
ε

(
1 + Rdϒ(s)

) ≤ |�(ε)| exp
(
R[ϒ(t) − ϒ(ε)])

≤ |�̃(ε,γ )| exp(Rϒ(τ)).

In view of the analysis above of ϒ(t), we get

|A(t, ε)| ≤ |�̃(ε,γ )| exp
(
R

[
�◦

0(τ ) + sup
u∈[0,τ ]

|M∗(u)|
])

.(21)

Putting (18), (20) and (21) together, we get

|�̃0(t,γ ) − �̃0(t,γ , ε)|
(22)

≤ R1

[
�◦

0(ε) + sup
u∈[0,τ ]

|M∗(u)|
](

1 + exp
(
R2

[
1 + sup

u∈[0,τ ]
|M∗(u)|

]))

for suitable absolute constants R1 and R2.
The last main step is to deal with the martingale process

M∗(u) =
∫ u

0
�(s)−1

[
1

n

2n∑
i=1

I (Ti0 < s)

mi∑
j=1

dMij (s)

]
.
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By an argument using Lenglart’s and Markov’s inequalities, as in [21] (page 595),
we obtain (with ξ1 as in Assumption 6)

Pr
(

sup
u∈[0,c]

|M∗(u)| > κn−1/2
)

≤ η + Rκ2η−1ξ1(c).(23)

Given (22) and (23), we have control over the first term of (17), and the proof is
thus complete. �

CLAIM A2. �̂0(t,γ ) converges in probability to some function �0(t,γ ) uni-
formly in t and γ . The function �0(t,γ ) satisfies �0(t,γ

◦) = �◦
0(t).

PROOF. We can write �̂0(t,γ ) as

�̂0(t,γ ) =
∫ t

0

n−1 ∑2n
i=1

∑mi

j=1 dNij (s)

n−1 ∑2n
i=1 ψ̃i(s−,γ )

∑mi

j=1 Yij (s) exp(βT Zij )
.

In view of Claim A1 above, up to a uniform error of oP (1) we can replace all
instances of �̃0(u,γ ) in the definition of ψ̃i(s−,γ ) by �∗

0(u,γ ). The desired
result then can be obtained using the argument used to prove Claim A of [36]. �

CLAIM A3. We have

sup
s∈[0,τ ],γ∈G

|�̃0(s,γ ) − �̃0(s−,γ )| P→ 0 as n → ∞,

sup
s∈[0,τ ],γ∈G

|�̂0(s,γ ) − �̂0(s−,γ )| P→ 0 as n → ∞.

PROOF. By appeal to Claims A1 and A2, and to continuity of �∗
0(t,γ ) and

�0(t,γ ). �

CLAIM B. U(γ , �̂0(·,γ )) converges in probability uniformly in t and γ to a
limit u(γ ,�0(·,γ )).

PROOF. As in Claim B of [36]. �

CLAIM C. There exists a unique consistent (in pr.) root to U(γ̂ , �̂0(·, γ̂ )) = 0.

PROOF. By appeal to Foutz’s theorem [8], as in Claim C of [36]. �

9.3. A workable representation of �̂0(t) − �◦
0(t). To develop our asymptotic

normality result, we need a workable representation of �̂0(t) − �◦
0(t). The first

step is to develop a suitable representation of �̃0(t) − �◦
0(t). Then, building on

this, we develop our representation of �̂0(t) − �◦
0(t).
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9.3.1. Representation of �̃0(t) − �◦
0(t). Our starting point is the following

simple lemma.

LEMMA 3. Let Rn(t) and Sn(t) be stochastic processes, and let An(t, ε)

and Bn(t, ε) be quantities that are bounded in pr. uniformly in t and ε. Define
Rn(t, ε) = Rn(t) − An(t, ε)Rn(ε) and Sn(t, ε) = Bn(t, ε)[Sn(t) − Sn(ε)]. Sup-
pose that:

1. supt∈[ε,τ ]
√

n|Rn(t, ε) − Sn(t, ε)| P→ 0 as n → ∞ for any fixed ε > 0.
2. limε↓0 lim supn→∞ Pr(supt∈[0,ε]

√
n|Rn(t)| > δ) = 0 for all δ > 0.

3. limε↓0 lim supn→∞ Pr(supt∈[0,ε]
√

n|Sn(t)| > δ) = 0 for all δ > 0.
4. limε→0 supt∈[0,τ ] |Bn(t, ε) − Bn(t,0)| = 0 with probability going to 1 as

n → ∞.

Then supt∈[0,τ ]
√

n|Rn(t) − Bn(t,0)Sn(t,0)| P→ 0.

We apply this lemma with Rn(t) = √
n[�̃0(t) − �◦

0(t)]. We have to check the
four conditions enumerated in the lemma.

Condition 1. Arguments along the lines of [36] yield the result of Condition 1,
with

Sn(t) =
∫ t

0

p̃(s−, ε)

Ỹ(s,�◦
0)

[
1

n

2n∑
i=1

mi∑
j=1

I (Ti0 < s)dMij (s)

]
(24)

and An(t, ε) = Bn(t, ε) = p̃(t, ε)−1, where

p̃(t, ε) = ∏
s∈[ε,t]

[
1 + n−1

2n∑
i=1

mi∑
j=0

{�ij (s, t) dÑij (s) + �∗(s)I (Ti0 < s)δij }
]
.

Here

Ỹ(s,�) = 1

n

2n∑
i=1

I (Ti0 < s)ψi(γ
◦,�, s)Ri·(s),

Ri·(s) =
mi∑

j=1

Yij (s) exp(β◦T Zij ),

�∗(s) = 1

n

2n∑
k=1

Rk·(s)η1k(s)I (Tk0 < s)

{Ỹ(s,�◦
0)}2

mk∑
l=1

I (Tkl > s) exp(β◦T Zkl),

�i0(s, t) = 1

n

∫ t

s

Ri·(u)η1i(u) exp(β◦T Zi0)

{Ỹ(u,�◦
0)}2

2n∑
k=1

mk∑
l=1

dNkl(u),
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�ij (s, t) = 1

n

∫ t

s

I (Ti0 < u)Ri·(u)η1i (u) exp(β◦T Zij )

{Ỹ(u,�◦
0)}2

×
2n∑

k=1

mk∑
l=1

I (Tk0 < u)dNkl(u), j ≥ 1.

In the above, η1i (s) is defined as

η1i (s) = φ3i (γ
◦,�◦

0, s)

φ1i (γ ◦,�◦
0, s)

−
{
φ2i (γ

◦,�◦
0, s)

φ1i (γ ◦,�◦
0, s)

}2

.

In Section 9.3.2 below, we present in detail a similar argument for �̂0(t) − �◦
0(t).

Appealing to assumption 6 and using arguments similar to those used in the
consistency proof, we find that the � quantities converge in probability uniformly
in s and t , so that p̃(t, ε) converges in probability to a deterministic limit uniformly
in t and ε.

Conditions 2, 3 and 4. In regard to Condition 2, we have �̃0(t,γ ) − �◦
0(t) =

�1(t) + �2(t), where

�1(t) =
∫ t

0
[�(s,γ ) − 1]λ◦

0(s) ds,

�2(t) =
∫ t

0

n−1 ∑2n
i=1 I (Ti0 < s)

∑mi

j=1 dMij (s)

n−1 ∑2n
i=1 I (Ti0 < s)ψ̄i(s−,γ , �̃)

∑mi

j=1 Yij (s) exp(βT Zij )
,

where

�(s,γ ) = n−1 ∑2n
i=1 I (Ti0 < s)ψi(s−,γ ◦,�◦

0)
∑mi

j=1 Yij (s) exp(β◦T Zij )

n−1 ∑2n
i=1 I (Ti0 < s)ψ̄i(s−,γ , �̃)

∑mi

j=1 Yij (s) exp(βT Zij )

and Mij (t) is defined as in (19). We will deal with �1(t) and �2(t) in turn, starting
with �2(t). In the development below, R denotes a “generic” absolute constant.

The quadratic variation process of �2(t) is given by

〈�2〉(t) =
∫ t

0

[
n−1 ∑2n

i=1 I (Ti0 < s)ψi(s−,γ ◦,�◦
0)

∑mi

j=1 Yij (s) exp(β◦T Zij )

[n−1 ∑2n
i=1 I (Ti0 < s)ψ̄i(s−,γ , �̃)

∑mi

j=1 Yij (s) exp(βT Zij )]2

]

× λ◦
0(s) ds.

By arguments similar to those of [21] (page 595), we find that E[n〈�2〉(t)] ≤
Rξ1(t). An application of Lenglart’s inequality then gives

Pr
(√

n sup
t∈[0,ε]

|�2(t)| > κ

)
≤ η + Rκ2η−1ξ1(ε) ∀η > 0.

Assumption 6 implies that ξ1(ε) ↓ 0 as ε ↓ 0, and this takes care of �2(t).



1510 M. GORFINE, D. M. ZUCKER AND L. HSU

We now turn to �1(t). Denote J (s) = I (�(s) > 0). We can write �1(t) =
�1a(t) + �1b(t), with

�1a(t) =
∫ t

0
[�(s,γ ) − 1]J (s)λ◦

0(s) ds

and

�1b(t) =
∫ t

0
[J (s) − 1]λ◦

0(s) ds.

The term �1b(t) can be shown to be uniformly Op(n−1/2) by the argument in the
middle of page 595 in [21]. As for �1a(t), we have

�1a(t) ≤ Rt |�̃0(t,γ ) − �◦
0(t)| ≤ Rt |�1(t)| + Rt |�2(t)|

≤ Rt |�1a(t)| + Rt |�1b(t)| + Rt |�2(t)|.
Thus, for t small, |�1a(t)| ≤ [Rt/(1 −Rt)][�1b(t)+�2(t)], and the terms on the
right hand side have already been taken care of.

The proof of Condition 3 is similar to that given above for �2(t). Condition 4
follows easily from the uniform convergence of the � quantities.

9.3.2. Representation of �̂0(t) − �◦
0(t). Define

Y(s, {�̃0, �̂0}) = 1

n

2n∑
i=1

ψ̃i(γ
◦, �̂0, s)Ri·(s)

and

Y(s,�) = 1

n

2n∑
i=1

ψi(γ
◦,�, s)Ri·(s),

where in ψ̃i(γ
◦, �̂0, s) we take �̃0(Ti0) if Ti0 ≥ s and �̂0(Tij ) if Tij < s, j ≥ 0.

By Claim A3, we have sups∈[0,τ ] |�̂0(s,γ
◦) − �̂0(s−,γ ◦)| converges to zero.

Thus, we obtain the following approximation, uniformly over t ∈ [0, τ ]:
�̂0(t,γ

◦) − �◦
0(t)

≈ 1

n

∫ t

0

∑2n
i=1

∑mi

j=1 dMij (s)

Y(s,�◦
0)

+ 1

n

∫ t

0
[{Y(s, {�̃0, �̂0})}−1 − {Y(s,�◦

0)}−1]
2n∑
i=1

mi∑
j=1

dNij (s).

Now let X(s, r) = {Y(s,�◦
0 +r��)}−1 with �� = �̂0 −�◦

0 or �̃0 −�◦
0, according

to the estimator being used. Define Ẋ and Ẍ as the first and second derivative of X
with respect to r , respectively. Then, by a first-order Taylor expansion of X(s, r)
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we get

�̂0(t,γ
◦) − �◦

0(t)

≈ n−1
∫ t

0
{Y(s,�◦

0)}−1
2n∑
i=1

mi∑
j=1

dMij (s)

− n−2
∫ t

0

2n∑
k=1

Rk·(s)η1k(s)

{Y(s,�◦
0)}2

mk∑
l=1

I (Tkl > s) exp(β◦T Zkl){�̂0(s) − �◦
0(s)}

×
2n∑
i=1

mi∑
j=1

dNij (s)

− n−2
∫ t

0

2n∑
k=1

Rk·(s)η1k(s)

{Y(s,�◦
0)}2

mk∑
l=1

I (Tkl ≤ s)

× exp(β◦T Zkl){�̂0(Tkl) − �◦
0(Tkl)}

×
2n∑
i=1

mi∑
j=1

dNij (s)

− n−2
∫ t

0

2n∑
k=1

Rk·(s)η1k(s)

{Y(s,�◦
0)}2 I (Tk0 ≥ s) exp(β◦T Zk0){�̃0(Tk0) − �◦

0(Tk0)}

×
2n∑
i=1

mi∑
j=1

dNij (s)

− n−2
∫ t

0

2n∑
k=1

Rk·(s)η1k(s)

{Y(s,�◦
0)}2 I (Tk0 < s) exp(β◦T Zk0){�̂0(Tk0) − �◦

0(Tk0)}

×
2n∑
i=1

mi∑
j=1

dNij (s).

The justification for ignoring the remainder term in the Taylor expansion is as
in the parallel argument in [36]. Note that in the above approximation probands’
data are involved since the derivative involves an estimator of �0 for the probands
(either �̂0 or �̃0) and not only an estimator for the relatives.

The second, third and fifth terms of the above equation can be written, by inter-
changing the order of integration, as

−n−1
∫ t

0
{�̂0(s) − �◦

0(s)}
2n∑
i=1

mi∑
j=0

ϒij (s, t) dÑij (s),

where Ñij (s) = I (Tij ≤ t),

ϒi0(s, t) = n−1
∫ t

s

Ri·(u)η1i (u) exp(β◦T Zi0)

{Y(u,�◦
0)}2

2n∑
k=1

mk∑
l=1

dNkl(u)
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and for j ≥ 1

ϒij (s, t) = n−1
∫ t

s

Ri·(u)η1i (u) exp(β◦T Zij )

{Y(u,�◦
0)}2

2n∑
k=1

mk∑
l=1

dNkl(u)

+ n−1
2n∑

k=1

Rk·(s)η1k(s)

{Y(s,�◦
0)}2

mk∑
l=1

I (Tkl > s) exp(β◦T Zkl)δkl.

The fourth term can be written, by plugging in the representation for �̃0 − �◦
0, as

−n−1
∫ τ

0

A(s, t)p̃(s−)

Ỹ(s,�◦
0)

2n∑
i=1

mi∑
j=1

I (Ti0 < s)dMij (s),

where

A(s, t) = n−2
∫ t

0

2n∑
k=1

Rk·(s)η1k(s)

{Y(s,�◦
0)}2 exp(β◦T Zk0)

×
[∫ τ

s
{p̃(v)}−1 dN�

k0(v)

] 2n∑
i=1

mi∑
j=1

dNij (s)

and N�
k0(t) = I (Tk0 ≤ t). Given all the above, we get

�̂0(t,γ
◦) − �◦

0(t) ≈ n−1
∫ t

0
{Y(s,�◦

0)}−1
2n∑
i=1

mi∑
j=1

dMij (s)

− n−1
∫ τ

0

A(s, t)p̃(s−)

Ỹ(s,�◦
0)

2n∑
i=1

mi∑
j=1

I (Ti0 < s)dMij (s)

− n−1
∫ t

0
{�̂0(s) − �◦

0(s)}
2n∑
i=1

mi∑
j=0

ϒij (s, t) dÑij (s).

By solving the above approximation recursively, for the relatives’ failure times, we
get

�̂0(t,γ
◦) − �◦

0(t)

≈ 1

np̂(t)

∫ t

0

p̂(s−)

Y(s,�◦
0)

2n∑
i=1

mi∑
j=1

dMij (s)

(25)

+ 1

np̂(t)

∫ τ

0
B(s, t)

2n∑
i=1

mi∑
j=1

p̃(s−)

Ỹ(s,�◦
0)

I (Ti0 < s)dMij (s)

− p̂(t−) dN(t)

n2p̂(t)

∫ τ

0
A(s, t)

2n∑
i=1

mi∑
j=1

p̃(s−)

Ỹ(s,�◦
0)

I (Ti0 < s)dMij (s),
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where N(t) = ∑2n
i=1

∑mi

i=1 Nij (t),

B(s, t) = n−1
∫ t−

0
A(s,u)p̂(u−)

2n∑
i=1

mi∑
j=0

ϒij (u, t−) dNij (u)

and

p̂(t) = ∏
s≤t

[
1 + 1

n

2n∑
i=1

mi∑
j=0

ϒij (s, t) dÑij (s)

]
.

9.4. Asymptotic normality of n1/2(γ̂ − γ ◦). To show that γ̂ is asymptotically
normally distributed, we expand U(γ̂ , �̂0(·, γ̂ )) = 0 as

U(γ ◦,�◦
0) + [U(γ ◦, �̂0(·,γ ◦)) − U(γ ◦,�◦

0)]
+ [U(γ̂ , �̂0(·, γ̂ )) − U(γ ◦, �̂0(·,γ ◦))] = 0.

We examine in turn each of the terms on the left-hand side of the above equation.

Step I. We can write U(γ ◦,�◦
0) = n−1(

∑n
i=1 ξ

(1)
i + ∑2n

i=1 ξ
(2)
i ), where ξ

(1)
i ,

i = 1, . . . , n, are i.i.d. mean-zero random (p + 1)-vectors stemming from the like-
lihood of the proband data, while ξ

(2)
i , i = 1, . . . ,2n, are i.i.d. mean-zero random

(p + 1)-vectors stemming from the likelihood of the relatives’ data. It follows
immediately from the classical central limit theorem that n−1/2U(γ ◦,�◦

0) is as-
ymptotically mean-zero multivariate normal.

Step II. Let Ûr = Ur(γ
◦, �̂0), r = 1, . . . , p and Ûp+1 = Up+1(γ

◦, �̂0) (in
this segment of the proof, when we write (γ ◦, �̂0) the intent is to signify
(γ ◦, �̂0(·,γ ◦)). Further, denote Qijr(γ

◦,�◦
0, Tij ) = [∂Ur(γ

◦,�◦
0)/∂�◦

0(Tij )],
i = 1, . . . ,2n, j = 0, . . . ,mi , r = 1, . . . , p + 1. First-order Taylor expansion of
Ûr about �◦

0, r = 1, . . . , p + 1, then gives

n1/2{Ur(γ
◦, �̂0) − Ur(γ

◦,�◦
0)}

= n−1/2
2n∑
i=1

mi∑
j=0

Qijr(γ
◦,�◦

0, Tij ){�̂0(Tij ,γ
◦) − �◦

0(Tij )} + op(1)

= 1

n

2n∑
i=1

mi∑
j=0

∫ τ

0
Qijr(γ

◦,�◦, s){�̂0(s,γ
◦) − �◦

0(s)}dÑij (s) + op(1).

Although probands are involved in the above stochastic integral, its integrand is
predictable since, by definitions (10) and (11), �̂0(t,γ ) depends only on data up
to time t−. Using the representation in Section 9.3.2 for

√
n[�̂0(s,γ

◦) − �◦
0(s)]

and replacing certain empirical sums by their limiting values (see the expanded
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paper for details), we obtain a representation of the form

Ur(γ
◦, �̂0) − Ur(γ

◦,�◦
0)

≈ 1

n

2n∑
k=1

mi∑
l=1

∫ τ

0

[
α(1)

r (u) + I (Tk0 < u)
{
α(2)

r (u) − α(3)
r (u)

}]
dMkl(u).

Thus, we have represented Ur(γ
◦, �̂0) − Ur(γ

◦,�◦
0) r = 1, . . . , p + 1 as the av-

erage of mean zero i.i.d. random variables. Hence, asymptotic normality follows
from the classical central limit theorem.

Step III. First-order Taylor expansion of U(γ̂ , �̂0(·, γ̂ )) about γ ◦ = (β◦T , θ◦)T
gives

U(γ̂ , �̂0(·, γ̂ )) = U(γ ◦, �̂0(·,γ ◦)) + D(γ ◦)(γ̂ − γ ◦)T + op(1),

where Dls(γ ) = ∂Ul(γ , �̂0(·,γ ))/∂γs for l, s = 1, . . . , p + 1.
Combining the results of Steps I–III above we get that n1/2(γ̂ − γ ◦) is asymp-

totically zero-mean normally distributed with a covariance matrix that can be con-
sistently estimated by a sandwich-type estimator.

9.5. Asymptotic properties of �̂0(·, γ̂ ). We can write√
n{�̂0(t, γ̂ ) − �◦

0(t)}
(26)

= √
n{�̂0(t,γ

◦) − �◦
0(t)} + √

n{�̂0(t, γ̂ ) − �̂0(t,γ
◦)}.

In (25), we have a representation of the first term above in terms of integrals with
respect to the martingale processes Mij . Weak convergence of the first term can
thus be established using the martingale central limit theorem, as in [1]. In partic-
ular, the first term is tight. In regard to the second term, Taylor expansion yields

�̂0(t, γ̂ ) − �̂0(t,γ
◦) = W(t,γ ◦)T (γ̂ − γ ◦) + op(1),

where

W(t,γ ) =
∫ t

0
n−1

2n∑
i=1

mi∑
j=1

{
∂

∂γ
ψ̃i(u−,γ ) + ψ̃i(u−,γ )Zij

}
Yij (u) exp(βT Zij )

×
(
n−1

2n∑
i=1

ψ̃i(u−,γ )Ri·(u)

)−1

d�̂0(u,γ ).

The limiting value of W(t, γ ) is

w(t,γ ) =
∫ t

0
E

[
n−1

2n∑
i=1

mi∑
j=1

{
∂

∂γ
ψ̃i(u−,γ ) + ψ̃i(u−,γ )Zij

}
Yij (u) exp(βT Zij )

]

×
(

E

[
n−1

2n∑
i=1

ψ̃i(u−,γ )Ri·(u)

])−1

λ◦
0(u) du.
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Since the integrand is bounded, the function w(t,γ ) is Lipschitz in t . We just
showed that

√
n(γ̂ − γ ◦) converges to a mean-zero normal variate. Hence the

second term in (26) is tight. Accordingly, the entire expression (26) is tight.
Now, as seen in the normality proof of Section 9.4, both terms in (26) can be

represented in terms of i.i.d. sums over i of functions of the data on family i.
Hence, asymptotic normality of the finite dimensional distributions of the entire
expression (26) follows from the classical central limit theorem. This, together
with the tightness just shown, establishes weak convergence of

√
n{�̂0(t, γ̂ ) −

�◦
0(t)} to a Gaussian process. A fortiori,

sup
t

|�̂0(t, γ̂ ) − �◦
0(t)| = Op(n−1/2).
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