507 research outputs found

    Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 mu m

    Get PDF
    The authors report a direct measurement of the absorption dynamics in an InAs p-i-n ridge waveguide quantum dot modulator. The carrier escape mechanisms are investigated via subpicosecond pump-probe measurements at room temperature, under reverse bias conditions. The optical pulses employed are degenerate in wavelength with the quantum dot ground state transition at 1.28 mu m. The absorption change recovers with characteristic times ranging from 62 ps (0 V) to similar to 700 fs (-10 V), showing a decrease of nearly two orders of magnitude. The authors show that at low applied fields, this recovery is attributed to thermionic emission while for higher applied fields, tunneling becomes the dominant mechanism. (c) 2006 American Institute of Physics.</p

    The photoionization dynamics of the three structural isomers of dichloroethene

    Get PDF
    Using tunable vacuum-UV radiation from a synchrotron, the threshold photoelectron spectrum, threshold photoelectron photoion coincidence spectrum and ion breakdown diagram of the 1,1, cis-1,2 and trans-1,2 isomers of C2_2H2_2Cl2_2 have been recorded in the range 9-23 eV. The energies of the peaks in the threshold photoelectron spectrum are in good agreement with outer-valence Greens function caculations. The major difference between the isomers, both predicted and observed experimentally is that the F and G states of C2_2H2_2Cl2+_2^+ are approximately degenerate for 1,1 and trans-1,2, but well separated for the cis-1,2 isomer. The ground and low-lying valence states of C2_2H2_2Cl2+_2^+ are bound, with higher-lying states dissociating to C2_2H2_2Cl+^+ or C2_2H2+_2^+. The translational kinetic energy release into C2_2H2_2Cl+^+ + Cl is determined as a function of energy. Isolated-state behaviour for the low-lying electronic states of C2_2H2_2Cl2+_2^+ becomes more statistical as the energy increases

    Controllable degradation kinetics of POSS nanoparticle-integrated poly(ε-caprolactone urea)urethane elastomers for tissue engineering applications.

    Get PDF
    Biodegradable elastomers are a popular choice for tissue engineering scaffolds, particularly in mechanically challenging settings (e.g. the skin). As the optimal rate of scaffold degradation depends on the tissue type to be regenerated, next-generation scaffolds must demonstrate tuneable degradation patterns. Previous investigations mainly focussed on the integration of more or less hydrolysable components to modulate degradation rates. In this study, however, the objective was to develop and synthesize a family of novel biodegradable polyurethanes (PUs) based on a poly(ε-caprolactone urea)urethane backbone integrating polyhedral oligomeric silsesquioxane (POSS-PCLU) with varying amounts of hard segments (24%, 28% and 33% (w/v)) in order to investigate the influence of hard segment chemistry on the degradation rate and profile. PUs lacking POSS nanoparticles served to prove the important function of POSS in maintaining the mechanical structures of the PU scaffolds before, during and after degradation. Mechanical testing of degraded samples revealed hard segment-dependent modulation of the materials' viscoelastic properties, which was attributable to (i) degradation-induced changes in the PU crystallinity and (ii) either the presence or absence of POSS. In conclusion, this study presents a facile method of controlling degradation profiles of PU scaffolds used in tissue engineering applications

    Fluorescent carbon dioxide indicators

    Get PDF
    Over the last decade, fluorescence has become the dominant tool in biotechnology and medical imaging. These exciting advances have been underpinned by the advances in time-resolved techniques and instrumentation, probe design, chemical / biochemical sensing, coupled with our furthered knowledge in biology. Complementary volumes 9 and 10, Advanced Concepts of Fluorescence Sensing: Small Molecule Sensing and Advanced Concepts of Fluorescence Sensing: Macromolecular Sensing, aim to summarize the current state of the art in fluorescent sensing. For this reason, Drs. Geddes and Lakowicz have invited chapters, encompassing a broad range of fluorescence sensing techniques. Some chapters deal with small molecule sensors, such as for anions, cations, and CO2, while others summarize recent advances in protein-based and macromolecular sensors. The Editors have, however, not included DNA or RNA based sensing in this volume, as this were reviewed in Volume 7 and is to be the subject of a more detailed volume in the near future

    Assessment of the potential in vivo ecotoxicity of Double-Walled Carbon Nanotubes (DWNTs) in water, using the amphibian Ambystoma mexicanum

    Get PDF
    Because of their specific properties (mechanical, electrical, etc), carbon nanotubes (CNTs) are being assessed for inclusion in many manufactured products. Due to their massive production and number of potential applications, the impact of CNTs on the environment must be taken into consideration. The present investigation evaluates the ecotoxic potential of CNTs in the amphibian larvae (Ambystoma mexicanum). Acute toxicity and genotoxicity were analysed after 12 days of exposure in laboratory conditions. The genotoxic effects were analysed by scoring the micronucleated erythrocytes in the circulating blood of the larvae according to the French standard micronucleus assay. The results obtained in the present study demonstrated that CNTs are neither acutely toxic nor genotoxic to larvae whatever the CNTs concentration in the water, although black masses of CNTs were observed inside the gut. In the increasing economical context of CNTs, complementary studies must be undertaken, especially including mechanistic and environmental investigations

    Geometric frustration in small colloidal clusters

    Full text link
    We study the structure of clusters in a model colloidal system with competing interactions using Brownian dynamics simulations. A short-ranged attraction drives clustering, while a weak, long-ranged repulsion is used to model electrostatic charging in experimental systems. The former is treated with a short-ranged Morse attractive interaction, the latter with a repulsive Yukawa interaction. We consider the yield of clusters of specific structure as a function of the strength of the interactions, for clusters with m=3,4,5,6,7,10 and 13 colloids. At sufficient strengths of the attractive interaction (around 10 kT), the average bond lifetime approaches the simulation timescale and the system becomes nonergodic. For small clusters m<=5 where geometric frustration is not relevant, despite nonergodicity, for sufficient strengths of the attractive interaction the yield of clusters which maximise the number of bonds approaches 100%. However for m=7m=7 and higher, in the nonergodic regime we find a lower yield of these structures where we argue geometric frustration plays a significant role. m=6m=6 is a special case, where two structures, of octahedral and C2v symmetry compete, with the latter being favoured by entropic contributions in the ergodic regime and by kinetic trapping in the nonergodic regime. We believe that our results should be valid as far as the one-component description of the interaction potential is valid. A system with competing electrostatic repulsions and van der Waals attractions may be such an example. However, in some cases, the one-component description of the interaction potential may not be appropriate.Comment: 21 pages, accepted for publication by J. Phys. Condens. Matte

    Modest induction of phase 2 enzyme activity in the F-344 rat prostate

    Get PDF
    BACKGROUND: Prostate cancer is the most commonly diagnosed malignancy in men and is thought to arise as a result of endogenous oxidative stress in the face of compromised carcinogen defenses. We tested whether carcinogen defense (phase 2) enzymes could be induced in the prostate tissues of rats after oral feeding of candidate phase 2 enzyme inducing compounds. METHODS: Male F344 rats were gavage fed sulforaphane, β-naphthoflavone, curcumin, dimethyl fumarate or vehicle control over five days, and on the sixth day, prostate, liver, kidney and bladder tissues were harvested. Cytosolic enzyme activities of nicotinamide quinone oxidoreductase (NQO1), total glutathione transferase (using DCNB) and mu-class glutathione transferase (using CDNB) were determined in the treated and control animals and compared. RESULTS: In prostatic tissues, sulforaphane produced modest but significant increases in the enzymatic activities of NQO1, total GST and GST-mu compared to control animals. β-naphthoflavone significantly increased NQO1 and GST-mu activities and curcumin increased total GST and GST-mu enzymatic activities. Dimethyl fumarate did not significantly increase prostatic phase 2 enzyme activity. Compared to control animals, sulforaphane also significantly induced NQO1 or total GST enzyme activity in the liver, kidney and, most significantly, in the bladder tissues. All compounds were well tolerated over the course of the gavage feedings. CONCLUSION: Orally administered compounds will induce modestly phase 2 enzyme activity in the prostate although the significance of this degree of induction is unknown. The 4 different compounds also altered phase 2 enzyme activity to different degrees in different tissue types. Orally administered sulforaphane potently induces phase 2 enzymes in bladder tissues and should be investigated as a bladder cancer preventive agent

    Oscillations and waves in solar spicules

    Get PDF
    Since their discovery, spicules have attracted increased attention as energy/mass bridges between the dense and dynamic photosphere and the tenuous hot solar corona. Mechanical energy of photospheric random and coherent motions can be guided by magnetic field lines, spanning from the interior to the upper parts of the solar atmosphere, in the form of waves and oscillations. Since spicules are one of the most pronounced features of the chromosphere, the energy transport they participate in can be traced by the observations of their oscillatory motions. Oscillations in spicules have been observed for a long time. However the recent high-resolutions and high-cadence space and ground based facilities with superb spatial, temporal and spectral capacities brought new aspects in the research of spicule dynamics. Here we review the progress made in imaging and spectroscopic observations of waves and oscillations in spicules. The observations are accompanied by a discussion on theoretical modelling and interpretations of these oscillations. Finally, we embark on the recent developments made on the presence and role of Alfven and kink waves in spicules. We also address the extensive debate made on the Alfven versus kink waves in the context of the explanation of the observed transverse oscillations of spicule axes
    corecore