21 research outputs found

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees

    Does the "Silver bullet" lose its shine over the time? Assessment of loss of lithium response in a preliminary sample of bipolar disorder outpatients

    Get PDF
    Background: Though often perceived as a "silver bullet" treatment for bipolar disorder (BD), lithium has seldom reported to lose its efficacy over the time. Objective: The aim of the present study was to assess cases of refractoriness toward restarted lithium in BD patients who failed to preserve maintenance. Method: Treatment trajectories associated with re-instituted lithium following loss of achieved lithium-based maintenance in BD were retrospectively reviewed for 37 BD-I patients (median age 52 years; F: M=17: 20 or 46% of the total) over an 8.1-month period on average. Results: In our sample only 4 cases (roughly 11% of the total, of whom F: M=2: 2) developed refractoriness towards lithium after its discontinuation. Thirty-three controls (F: M=15: 18) maintained lithium response at the time of re-institution. No statistically significant difference between cases and controls was observed with respect to a number of demographic and clinical features but for time spent before first trial ever with lithium in life (8.5 vs. 3 years; U=24.5, Z=-2.048, p=.041) and length of lithium discontinuation until new therapeutic attempt (5.5 vs. 2 years; U=8, Z=-2.927, p=.003) between cases vs. controls respectively. Tapering off of lithium was significantly faster among cases vs. controls (1 vs. 7 days; U=22, Z=-2.187), though both subgroups had worrisome high rates of poor adherence overall. Conclusion: Although intrinsic limitations of the present preliminary assessment hamper the validity and generalizability of overall results, stating the clinical relevance of the topic further prospective research is warranted. The eventual occurrence of lithium refractoriness may indeed be associated with peculiar course trajectories and therapeutic outcomes ultimately urging the prescribing clinicians to put efforts in preserving maintenance of BD in the absence of any conclusive research insight on the matter. © Fornaro et al

    Individuals who do and do not perceive difficulties adhering to a diet for diabetes mellitus, their quality of life and glycaemic control

    Get PDF
    Opinion regarding the successful management of insulin dependent diabetes mellitus (IDDM) has identified nutrition as a key player. Whilst important, diet has also been highlighted as one of the most difficult aspects of the regimen, by both individuals with IDDM and health workers. Current dietetic recommendations for the nutritional management of individuals with IDDM include, the normalisation of plasma glucose and the promotion of patient well being. This study aimed to determine if any significant difference in quality of life (QOL) and glycaemic control existed between groups of individuals with IDDM, who perceive their diet difficult to adhere to and those who perceive adherence easy

    Functional susceptibility of tropical forests to climate change

    No full text
    Tropical forests are some of the most biodiverse ecosystems in the world, yet their functioning is threatened by anthropogenic disturbances and climate change. Global actions to conserve tropical forests could be enhanced by having local knowledge on the forestsʼ functional diversity and functional redundancy as proxies for their capacity to respond to global environmental change. Here we create estimates of plant functional diversity and redundancy across the tropics by combining a dataset of 16 morphological, chemical and photosynthetic plant traits sampled from 2,461 individual trees from 74 sites distributed across four continents together with local climate data for the past half century. Our findings suggest a strong link between climate and functional diversity and redundancy with the three trait groups responding similarly across the tropics and climate gradient. We show that drier tropical forests are overall less functionally diverse than wetter forests and that functional redundancy declines with increasing soil water and vapour pressure deficits. Areas with high functional diversity and high functional redundancy tend to better maintain ecosystem functioning, such as aboveground biomass, after extreme weather events. Our predictions suggest that the lower functional diversity and lower functional redundancy of drier tropical forests, in comparison with wetter forests, may leave them more at risk of shifting towards alternative states in face of further declines in water availability across tropical regions
    corecore