553 research outputs found

    Estimation of solar prominence magnetic fields based on the reconstructed 3D trajectories of prominence knots

    Full text link
    We present an estimation of the lower limits of local magnetic fields in quiescent, activated, and active (surges) promineces, based on reconstructed 3-dimensional (3D) trajectories of individual prominence knots. The 3D trajectories, velocities, tangential and centripetal accelerations of the knots were reconstructed using observational data collected with a single ground-based telescope equipped with a Multi-channel Subtractive Double Pass imaging spectrograph. Lower limits of magnetic fields channeling observed plasma flows were estimated under assumption of the equipartition principle. Assuming approximate electron densities of the plasma n_e = 5*10^{11} cm^{-3} in surges and n_e = 5*10^{10} cm^{-3} in quiescent/activated prominences, we found that the magnetic fields channeling two observed surges range from 16 to 40 Gauss, while in quiescent and activated prominences they were less than 10 Gauss. Our results are consistent with previous detections of weak local magnetic fields in the solar prominences.Comment: 14 pages, 12 figures, 1 tabl

    Domain perturbation for parabolic equations

    Get PDF
    Doctor of PhilosophyWe study the effect of domain perturbation on the behaviour of parabolic equations. The first aspect considered in this thesis is the behaviour of solutions under changes of the domain. We show how solutions of linear and semilinear parabolic equations behave as a sequence of domains Ωn\Omega_n converges to an open set Ω\Omega in a certain sense. In particular, we are interested in singular domain perturbations so that a change of variables is not possible on these domains. For autonomous linear equations, it is known that convergence of solutions under domain perturbation is closely related to the corresponding elliptic equations via a standard semigroup theory. We show that there is also a relation between domain perturbation for non-autonomous linear parabolic equations and domain perturbation for elliptic equations. The key result for this is the equivalence of Mosco convergences between various closed and convex subsets of Banach spaces. An important consequence is that the same conditions for a sequence of domains imply convergence of solutions under domain perturbation for both parabolic and elliptic equations. By applying variational methods, we obtain the convergence of solutions of initial value problems under Dirichlet or Neumann boundary conditions. A similar technique can be applied to obtain the convergence of weak solutions of parabolic variational inequalities when the underlying convex set is perturbed. Using the linear theory, we then study domain perturbation for initial boundary value problems of semilinear type. We are also interested in the behaviour of bounded entire solutions of parabolic equations defined on the whole real line. We establish a convergence result for bounded entire solutions of linear parabolic equations under L2L^2 and LpL^p-norms. For the LpL^p-theory, we also prove H\"{o}lder regularity of bounded entire solutions with respect to time. In addition, the persistence of some classes of bounded entire solutions is given for semilinear equations using the Leray-Schauder degree theory. The second aspect is to study the dynamics of parabolic equations under domain perturbation. In this part, we consider parabolic equation as a dynamical system in an L2L^2 space and study the stability of invariant manifolds near a stationary solution. In particular, we prove the continuity (upper and lower semicontinuity) of both, the local stable invariant manifolds and the local unstable invariant manifolds under domain perturbation

    Physics of Solar Prominences: II - Magnetic Structure and Dynamics

    Full text link
    Observations and models of solar prominences are reviewed. We focus on non-eruptive prominences, and describe recent progress in four areas of prominence research: (1) magnetic structure deduced from observations and models, (2) the dynamics of prominence plasmas (formation and flows), (3) Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and large-scale patterns of the filament channels in which prominences are located. Finally, several outstanding issues in prominence research are discussed, along with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape

    Hetero-association of aromatic molecules in aqueous solution

    Get PDF
    Knowledge of the physical chemistry of small molecules complexation (the hetero-association) in aqueous solution is increasingly important in view of the rapidly emerging branch of supramolecular chemistry dealing with the formation of heterogeneous polymeric structures having specific functional roles. In this paper, the 50-year history of scientific studies of hetero-association of heterocyclic aromatic molecules in aqueous solution has been reviewed. Some important correlations of structural and thermodynamic parameters of complexation have been reported based on large data-set of hetero-association parameters accumulated to date. The fundamental problem of ‘energetic composition’ of π-stacking is extensively discussed. The review has shown that there are some gaps in our understanding of heteroassociation, which provides a challenge for further studies in this are

    The influence of helium-induced defects on the migration of strontium implanted into SiC above critical amorphization temperature

    Get PDF
    The presence of radiation-induced defects and the high temperature of implantation are breeding grounds for helium (He) to accumulate and form He-induced defects (bubbles, blisters, craters, and cavities) in silicon carbide (SiC). In this work, the influence of He-induced defects on the migration of strontium (Sr) implanted into SiC was investigated. Sr-ions of 360 keV were implanted into polycrystalline SiC to a fluence of 2 × 1016 Sr-ions/cm2 at 600°C (Sr-SiC). Some of the Sr-SiC samples were then co-implanted with He-ions of 21.5 keV to a fluence of 1 × 1017 He-ions/cm2 at 350°C (Sr + He-SiC). The Sr-SiC and Sr + He-SiC samples were annealed for 5 h at 1,000°C. The as-implanted and annealed samples were characterized by Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), and Rutherford backscattered spectrometry (RBS). Implantation of Sr retained some defects in SiC, while co-implantation of He resulted in the formation of He-bubbles, blisters, and craters (exfoliated blisters). Blisters close to the critical height and size were the first to exfoliate after annealing. He-bubbles grew larger after annealing owing to the capture of more vacancies. In the co-implanted samples, Sr was located in three regions: the crystalline region (near the surface), the bubble region (where the projected range of Sr was located), and the damage region toward the bulk. Annealing the Sr + He-SiC caused the migration of Sr towards the bulk, while no migration was observed in the Sr-SiC samples. The migration was governed by “vacancy migration driven by strain fileds.

    Regional microbial signatures positively correlate with differential wine phenotypes: evidence for a microbial aspect to terroir

    Get PDF
    Many crops display differential geographic phenotypes and sensorial signatures, encapsulated by the concept of terroir. The drivers behind these differences remain elusive, and the potential contribution of microbes has been ignored until recently. Significant genetic differentiation between microbial communities and populations from different geographic locations has been demonstrated, but crucially it has not been shown whether this correlates with differential agricultural phenotypes or not. Using wine as a model system, we utilize the regionally genetically differentiated population of Saccharomyces cerevisiae in New Zealand and objectively demonstrate that these populations differentially affect wine phenotype, which is driven by a complex mix of chemicals. These findings reveal the importance of microbial populations for the regional identity of wine, and potentially extend to other important agricultural commodities. Moreover, this suggests that long-term implementation of methods maintaining differential biodiversity may have tangible economic imperatives as well as being desirable in terms of employing agricultural practices that increase responsible environmental stewardship
    corecore