55 research outputs found

    The RNA-binding landscape of HAX1 protein indicates its involvement in translation and ribosome assembly

    Get PDF
    HAX1 is a human protein with no known homologues or structural domains. Mutations in the HAX1 gene cause severe congenital neutropenia through mechanisms that are poorly understood. Previous studies reported the RNA-binding capacity of HAX1, but the role of this binding in physiology and pathology remains unexplained. Here, we report the transcriptome-wide characterization of HAX1 RNA targets using RIP-seq and CRAC, indicating that HAX1 binds transcripts involved in translation, ribosome biogenesis, and rRNA processing. Using CRISPR knockouts, we find that HAX1 RNA targets partially overlap with transcripts downregulated in HAX1 KO, implying a role in mRNA stabilization. Gene ontology analysis demonstrated that genes differentially expressed in HAX1 KO (including genes involved in ribosome biogenesis and translation) are also enriched in a subset of genes whose expression correlates with HAX1 expression in four analyzed neoplasms. The functional connection to ribosome biogenesis was also demonstrated by gradient sedimentation ribosome profiles, which revealed differences in the small subunit:monosome ratio in HAX1 WT/KO. We speculate that changes in HAX1 expression may be important for the etiology of HAX1-linked diseases through dysregulation of translation

    First familial cases of type 2 congenital erythrocytosis (ECYT2) with a Chuvash pathogenic variant in gene in Poland: example of the clinical utility of next-generation sequencing in diagnostics of orphan diseases

    Get PDF
    In this article, we report familial cases of type 2 congenital erythrocytosis (ECYT2) in two siblings, a 2-year-old boy and his younger sister. Both patients were diagnosed based on laboratory findings including erythrocytosis, elevated hemoglobin levels, and hematocrit. Acquired erythrocytosis was excluded based on the clinical features and genetic analysis of genes. Next-generation sequencing was employed for older brother revealing NM_000551.4: c.598C>T, p.Arg200Trp homozygous variant in the gene, the similar variant was detected in the younger sibling. Sequencing analysis confirmed the c.598C>T heterozygous variant in both parents. To the best of our knowledge, these are the first confirmed cases of familial erythrocytosis type 2, also known as Chuvash type, in Poland

    Successful use of a phage endolysin for treatment of chronic pelvic pain syndrome/chronic bacterial prostatitis

    Get PDF
    Chronic prostatitis (CP) is a common inflammatory condition of the prostate that is estimated to effect 2%–10% of the world’s male population. It can manifest as perineal, suprapubic, or lower back pain and urinary symptoms occurring with either recurrent bacterial infection [chronic bacterial prostatitis (CBP)] or in the absence of evidence of bacterial infection [chronic pelvic pain syndrome (CPPS)]. Here, in the case of a 39 years-old CBP patient, we report the first successful use of a bacteriophage-derived muralytic enzyme (endolysin) to treat and resolve the disease. Bacteriological analysis of the patient’s prostatic secretion and semen samples revealed a chronic Enterococcus faecalis prostate infection, supporting a diagnosis of CBP. The patient’s E. faecalis strain was resistant to several antibiotics and developed resistance to others during the course of treatment. Previous treatment with multiple courses of antibiotics, bacteriophages, probiotics, and immunologic stimulation had failed to achieve long term eradication of the infection or lasting mitigation of the symptoms. A cloned endolysin gene, encoded by E. faecalis bacteriophage ϕEf11, was expressed, and the resulting gene product was purified to electrophoretic homogeneity. A seven-day course of treatment with the endolysin resulted in the elimination of the E. faecalis infection to below culturally detectable levels, and the abatement of symptoms to near normal levels. Furthermore, during the endolysin treatment, the patient experienced no untoward reactions. The present report demonstrates the effectiveness of an endolysin as a novel modality in managing a recalcitrant infection that could not be controlled by conventional antibiotic therapy

    Whole-exome sequencing in patients with protein aggregate myopathies reveals causative mutations associated with novel atypical phenotypes

    Get PDF
    BACKGROUND: Myofibrillar myopathies (MFM) are a subgroup of protein aggregate myopathies (PAM) characterized by a common histological picture of myofibrillar dissolution, Z-disk disintegration, and accumulation of degradation products into inclusions. Mutations in genes encoding components of the Z-disk or Z-disk-associated proteins occur in some patients whereas in most of the cases, the causative gene defect is still unknown. We aimed to search for pathogenic mutations in genes not previously associated with MFM phenotype.METHODS: We performed whole-exome sequencing in four patients from three unrelated families who were diagnosed with PAM without aberrations in causative genes for MFM.RESULTS: In the first patient and her affected daughter, we identified a heterozygous p.(Arg89Cys) missense mutation in LMNA gene which has not been linked with PAM pathology before. In the second patient, a heterozygous p.(Asn4807Phe) mutation in RYR1 not previously described in PAM represents a novel, candidate gene with a possible causative role in the disease. Finally, in the third patient and his symptomatic daughter, we found a previously reported heterozygous p.(Cys30071Arg) mutation in TTN gene that was clinically associated with cardiac involvement.CONCLUSIONS: Our study identifies a new genetic background in PAM pathology and expands the clinical phenotype of known pathogenic mutations

    Differences in the composition of the bacterial element of the urinary tract microbiome in patients undergoing dialysis and patients after kidney transplantation

    Get PDF
    IntroductionThe development of molecular biology methods and their application in microbial research allowed the detection of many new pathogens that cause urinary tract infections (UTIs). Despite the advances of using new research techniques, the etiopathogenesis of UTIs, especially in patients undergoing dialysis and patients after kidney transplantation, is still not fully understood.MethodsThis study aimed to characterize and compare the composition of the bacterial element of the urinary tract microbiome between the groups of patients undergoing dialysis (n = 50) and patients after kidney transplantation (n = 50), with positive or negative urine culture, compared to healthy individuals (n = 50).ResultsAsymptomatic bacteriuria was observed in 30% of the urine cultures of patients undergoing dialysis and patients after kidney transplantation, with Escherichia coli as the most dominant microorganism (73%) detected with the use of classical microbiology techniques. However, differences in the bacterial composition of the urine samples between the evaluated patient groups were demonstrated using the amplicon sequencing. Finegoldia, Leptotrichia, and Corynebacterium were found to be discriminative bacteria genera in patients after dialysis and kidney transplantation compared to the control group. In addition, in all of urine samples, including those without bacteriuria in classical urine culture, many types of bacteria have been identified using 16S rRNA sequencing.DiscussionThe revealed microbial characteristics may form the basis in searching for new diagnostic markers in treatment of patients undergoing dialysis and patients after kidney transplantation

    Results of Polish Adult Leukemia Study Group (PALG) project assessing TP53 mutations with next-generation sequencing technology in relapsed and refractory chronic lymphocytic leukemia patients — an 18-month update

    Get PDF
    Indtroduction and methods: In chronic lymphocytic leukemia (CLL), molecular and cytogenetic diagnostics are crucial for the determination of accurate prognosis and treatment choice. Among different genetic aberrations, del(17p13) or TP53 mutations constitute high-risk factors, and early identification of such defects is a high priority for CLL patients. While cytogenetic diagnostics is well-established and accessible for the majority of CLL patients in Poland, molecular diagnostics of TP53 mutations is performed only in a few ERIC-certified centers (eight as of September 2020), and only two of these employ next-generation sequencing (NGS) for routine analysis of TP53 status in CLL patients. Here we report the interim results of a project assessing TP53 mutations with NGS technology in relapsed or refractory CLL patients with confirmed negative del(17p13) status. 249 patients from 32 clinical centers were included in the study. Results: NGS analysis revealed TP53 mutations in 42/249 (17%) patients, half of whom (21/249, 8.5%) had subclonal mutations (VAF ≤10%). These results are in line with published data in relapsed/refractory CLL patients. Conclusions: The results of the project demonstrated the feasibility and accuracy of NGS testing in CLL patients despite several initial logistical and technical obstacles. Our study also proved that, with appropriate funding, CLL patients from any hematological center in Poland can have access to state-of-the-art molecular diagnostic
    • …
    corecore