17 research outputs found

    How Leiomodin and Tropomodulin use a common fold for different actin assembly functions

    Get PDF
    How proteins sharing a common fold have evolved different functions is a fundamental question in biology. Tropomodulins (Tmods) are prototypical actin filament pointed-end-capping proteins, whereas their homologues, Leiomodins (Lmods), are powerful filament nucleators. We show that Tmods and Lmods do not compete biochemically, and display similar but distinct localization in sarcomeres. Changes along the polypeptide chains of Tmods and Lmods exquisitely adapt their functions for capping versus nucleation. Tmods have alternating tropomyosin (TM)- and actin-binding sites (TMBS1, ABS1, TMBS2 and ABS2). Lmods additionally contain a C-terminal extension featuring an actin-binding WH2 domain. Unexpectedly, the different activities of Tmods and Lmods do not arise from the Lmodspecific extension. Instead, nucleation by Lmods depends on two major adaptations-the loss of pointed-end-capping elements present in Tmods and the specialization of the highly conserved ABS2 for recruitment of two or more actin subunits. The WH2 domain plays only an auxiliary role in nucleation.Peer reviewe

    NAA80 is actin’s N-terminal acetyltransferase and regulates cytoskeleton assembly and cell motility

    Get PDF
    Actin, one of the most abundant proteins in nature, participates in countless cellular functions ranging from organelle trafficking and pathogen motility to cell migration and regulation of gene transcription. Actin's cellular activities depend on the dynamic transition between its monomeric and filamentous forms, a process exquisitely regulated in cells by a large number of actin-binding and signaling proteins. Additionally, several posttranslational modifications control the cellular functions of actin, including most notably N-terminal (Nt)-acetylation, a prevalent modification throughout the animal kingdom. However, the biological role and mechanism of actin Nt-acetylation are poorly understood, and the identity of actin's N-terminal acetyltransferase (NAT) has remained a mystery. Here, we reveal that NAA80, a suggested NAT enzyme whose substrate specificity had not been characterized, is Nt-acetylating actin. We further show that actin Nt-acetylation plays crucial roles in cytoskeletal assembly in vitro and in cells. The absence of Nt-acetylation leads to significant differences in the rates of actin filament depolymerization and elongation, including elongation driven by formins, whereas filament nucleation by the Arp2/3 complex is mostly unaffected. NAA80-knockout cells display severely altered cytoskeletal organization, including an increase in the ratio of filamentous to globular actin, increased filopodia and lamellipodia formation, and accelerated cell motility. Together, the results demonstrate NAA80's role as actin's NAT and reveal a crucial role for actin Nt-acetylation in the control of cytoskeleton structure and dynamics

    Use of thermolytic protective groups to prevent G-tetrad formation in CpG ODN type D: structural studies and immunomodulatory activity in primates

    Get PDF
    CpG oligodeoxynucleotides (ODN) show promise as immunoprotective agents and vaccine adjuvants. CpG ODN type D were shown to improve clinical outcome in rhesus macaques challenged with Leishmania major. These ODN have a self-complementary core sequence and a 3′ end poly(G) track that favors G-tetrad formation leading to multimerization. Although multimerization appears necessary for localization to early endosomes and signaling via Toll-like receptor 9 (TLR-9), it can result in product polymorphisms, aggregation and precipitation, thereby hampering their clinical applications. This study shows that functionalizing the poly(G) track of D ODN with thermolytic 2-(N-formyl-N-methyl)aminoethyl (fma) phosphate/thiophosphate protecting groups (pro-D ODN) reduces G-tetrad formation in solution, while allowing tetrad formation inside the cell where the potassium concentration is higher. Temperature-dependent cleavage of the fma groups over time further promoted formation of stable G-tetrads. Peripheral blood cells internalized pro-D ODN efficiently, inducing high levels of IFNα, IL-6, IFNγ and IP-10 and triggering dendritic cell maturation. Administration of pro-D35 to macaques challenged with L.major significantly increased the number of antigen-specific IFNγ-secreting PBMC and reduced the severity of the skin lesions demonstrating immunoprotective activity of pro-D ODN in vivo. This technology fosters the development of more efficient immunotherapeutic oligonucleotide formulations for the treatment of allergies, cancer and infectious diseases

    Mechanism of actin N-terminal acetylation

    Get PDF
    About 80% of human proteins are amino-terminally acetylated (Nt-acetylated) by one of seven Nt-acetyltransferases (NATs). Actin, the most abundant protein in the cytoplasm, has its own dedicated NAT, NAA80, which acts posttranslationally and affects cytoskeleton assembly and cell motility. Here, we show that NAA80 does not associate with filamentous actin in cells, and its natural substrate is the monomeric actin-profilin complex, consistent with Nt-acetylation preceding polymerization. NAA80 Nt-acetylates actin-profilin much more efficiently than actin alone, suggesting that profilin acts as a chaperone for actin Nt-acetylation. We determined crystal structures of the NAA80-actin-profilin ternary complex, representing different actin isoforms and different states of the catalytic reaction and revealing the first structure of NAT-substrate complex at atomic resolution. The structural, biochemical, and cellular analysis of mutants shows how NAA80 has evolved to specifically recognize actin among all cellular proteins while targeting all six actin isoforms, which differ the most at the amino terminus

    Molecular mechanism of Arp2/3 complex inhibition by Arpin

    No full text
    International audienceAbstract Positive feedback loops involving signaling and actin assembly factors mediate the formation and remodeling of branched actin networks in processes ranging from cell and organelle motility to mechanosensation. The Arp2/3 complex inhibitor Arpin controls the directional persistence of cell migration by interrupting a feedback loop involving Rac-WAVE-Arp2/3 complex, but Arpin’s mechanism of inhibition is unknown. Here, we describe the cryo-EM structure of Arpin bound to Arp2/3 complex at 3.24-Å resolution. Unexpectedly, Arpin binds Arp2/3 complex similarly to WASP-family nucleation-promoting factors (NPFs) that activate the complex. However, whereas NPFs bind to two sites on Arp2/3 complex, on Arp2-ArpC1 and Arp3, Arpin only binds to the site on Arp3. Like NPFs, Arpin has a C-helix that binds at the barbed end of Arp3. Mutagenesis studies in vitro and in cells reveal how sequence differences within the C-helix define the molecular basis for inhibition by Arpin vs. activation by NPFs
    corecore