350 research outputs found

    Limits of dispersoid size and number density in oxide dispersion strengthened alloys fabricated with powder bed fusion-laser beam

    Full text link
    Previous work on additively-manufactured oxide dispersion strengthened alloys focused on experimental approaches, resulting in larger dispersoid sizes and lower number densities than can be achieved with conventional powder metallurgy. To improve the as-fabricated microstructure, this work integrates experiments with a thermodynamic and kinetic modeling framework to probe the limits of the dispersoid sizes and number densities that can be achieved with powder bed fusion-laser beam. Bulk samples of a Ni-20Cr ++ 1 wt.\% Y2_2O3_3 alloy are fabricated using a range of laser power and scanning velocity combinations. Scanning transmission electron microscopy characterization is performed to quantify the dispersoid size distributions across the processing space. The smallest mean dispersoid diameter (29 nm) is observed at 300 W and 1200 mm/s, with a number density of 1.0×\times1020^{20} m3^{-3}. The largest mean diameter (72 nm) is observed at 200 W and 200 mm/s, with a number density of 1.5×\times1019^{19} m3^{-3}. Scanning electron microscopy suggests that a considerable fraction of the oxide added to the feedstock is lost during processing, due to oxide agglomeration and the ejection of oxide-rich spatter from the melt pool. After accounting for these losses, the model predictions for the dispersoid diameter and number density align with the experimental trends. The results suggest that the mechanism that limits the final number density is collision coarsening of dispersoids in the melt pool. The modeling framework is leveraged to propose processing strategies to limit dispersoid size and increase number density.Comment: Main text: 36 pages, 12 figure

    Observation of reduced thermal conductivity in a metal-organic framework due to the presence of adsorbates

    Get PDF
    Whether the presence of adsorbates increases or decreases thermal conductivity in metal-organic frameworks (MOFs) has been an open question. Here we report observations of thermal transport in the metal-organic framework HKUST-1 in the presence of various liquid adsorbates: water, methanol, and ethanol. Experimental thermoreflectance measurements were performed on single crystals and thin films, and theoretical predictions were made using molecular dynamics simulations. We find that the thermal conductivity of HKUST-1 decreases by 40 – 80% depending on the adsorbate, a result that cannot be explained by effective medium approximations. Our findings demonstrate that adsorbates introduce additional phonon scattering in HKUST-1, which particularly shortens the lifetimes of low-frequency phonon modes. As a result, the system thermal conductivity is lowered to a greater extent than the increase expected by the creation of additional heat transfer channels. Finally, we show that thermal diffusivity is even more greatly reduced than thermal conductivity by adsorption

    Effect of Thermoelectric Cooling in Nanoscale Junctions

    Full text link
    We propose a thermoelectric cooling device based on an atomic-sized junction. Using first-principles approaches, we investigate the working conditions and the coefficient of performance (COP) of an atomic-scale electronic refrigerator where the effects of phonon's thermal current and local heating are included. It is observed that the functioning of the thermoelectric nano-refrigerator is restricted to a narrow range of driving voltages. Compared with the bulk thermoelectric system with the overwhelmingly irreversible Joule heating, the 4-Al atomic refrigerator has a higher efficiency than a bulk thermoelectric refrigerator with the same ZTZT due to suppressed local heating via the quasi-ballistic electron transport and small driving voltages. Quantum nature due to the size minimization offered by atomic-level control of properties facilitates electron cooling beyond the expectation of the conventional thermoelectric device theory.Comment: 8 figure

    Efficiency of Energy Conversion in Thermoelectric Nanojunctions

    Full text link
    Using first-principles approaches, this study investigated the efficiency of energy conversion in nanojunctions, described by the thermoelectric figure of merit ZTZT. We obtained the qualitative and quantitative descriptions for the dependence of ZTZT on temperatures and lengths. A characteristic temperature: T0=β/γ(l)T_{0}= \sqrt{\beta/\gamma(l)} was observed. When TT0T\ll T_{0}, ZTT2ZT\propto T^{2}. When TT0T\gg T_{0}, ZTZT tends to a saturation value. The dependence of ZTZT on the wire length for the metallic atomic chains is opposite to that for the insulating molecules: for aluminum atomic (conducting) wires, the saturation value of ZTZT increases as the length increases; while for alkanethiol (insulating) chains, the saturation value of ZTZT decreases as the length increases. ZTZT can also be enhanced by choosing low-elasticity bridging materials or creating poor thermal contacts in nanojunctions. The results of this study may be of interest to research attempting to increase the efficiency of energy conversion in nano thermoelectric devices.Comment: 2 figure

    Molecular design and control of fullerene-based bi-thermoelectric materials

    Get PDF
    Molecular junctions are a versatile test bed for investigating nanoscale thermoelectricity and contribute to the design of new cost-effective environmentally friendly organic thermoelectric materials. It was suggested that transport resonances associated with discrete molecular levels could play a key role in thermoelectric performance, but no direct experimental evidence has been reported. Here we study single-molecule junctions of the endohedral fullerene Sc3N@C8 connected to gold electrodes using a scanning tunnelling microscope. We find that the magnitude and sign of the thermopower depend strongly on the orientation of the molecule and on applied pressure. Our calculations show that Sc3N inside the fullerene cage creates a sharp resonance near the Fermi level, whose energetic location, and hence the thermopower, can be tuned by applying pressure. These results reveal that Sc3N@C80 is a bi-thermoelectric material, exhibiting both positive and negative thermopower, and provide an unambiguous demonstration of the importance of transport resonances in molecular junctions

    Dynamics of ampicillin-resistant Enterococcus faecium clones colonizing hospitalized patients: data from a prospective observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about the dynamics of colonizing <it>Enterococcus faecium </it>clones during hospitalization, invasive infection and after discharge.</p> <p>Methods</p> <p>In a prospective observational study we compared intestinal <it>E. faecium </it>colonization in three patient cohorts: 1) Patients from the Hematology Unit at the University Hospital Basel (UHBS), Switzerland, were investigated by weekly rectal swabs (RS) during hospitalization (group 1a, n = 33) and monthly after discharge (group 1b, n = 21). 2) Patients from the Intensive Care Unit (ICU) at the University Medical Center Utrecht, the Netherlands (group 2, n = 25) were swabbed weekly. 3) Patients with invasive <it>E. faecium </it>infection at UHBS were swabbed at the time of infection (group 3, n = 22). From each RS five colonies with typical <it>E</it>. <it>faecium </it>morphology were picked. Species identification was confirmed by PCR and ampicillin-resistant <it>E. faecium </it>(ARE) isolates were typed using Multiple Locus Variable Number Tandem Repeat Analysis (MLVA). The Simpson's Index of Diversity (SID) was calculated.</p> <p>Results</p> <p>Out of 558 ARE isolates from 354 RS, MT159 was the most prevalent clone (54%, 100%, 52% and 83% of ARE in groups 1a, 1b, 2 and 3, respectively). Among hematological inpatients 13 (40%) had ARE. During hospitalization, the SID of MLVA-typed ARE decreased from 0.745 [95%CI 0.657-0.833] in week 1 to 0.513 [95%CI 0.388-0.637] in week 3. After discharge the only detected ARE was MT159 in 3 patients. In the ICU (group 2) almost all patients (84%) were colonized with ARE. The SID increased significantly from 0.373 [95%CI 0.175-0.572] at week 1 to a maximum of 0.808 [95%CI 0.768-0.849] at week 3 due to acquisition of multiple ARE clones. All 16 patients with invasive ARE were colonized with the same MLVA clone (<it>p </it>< 0.001).</p> <p>Conclusions</p> <p>In hospitalized high-risk patients MT159 is the most frequent colonizer and cause of invasive <it>E. faecium </it>infections. During hospitalization, ASE are quickly replaced by ARE. Diversity of ARE increases on units with possible cross-transmission such as ICUs. After hospitalization ARE are lost with the exception of MT159. In invasive infections, the invasive clone is the predominant gut colonizer.</p

    Structural versus Electrical Functionalization of Oligo(phenyleneethynylene) Diamine Molecular Junctions

    Get PDF
    We explore both experimentally and theoretically the conductance and packing of molecular junctions based on oligo(phenyleneethynylene) (OPE) diamine wires, when a series of functional groups are incorporated into the wires. Using the scanning tunnelling microscopy break-junction (STM BJ) technique, we study these compounds in two environments (air and 1,2,4-trichlorobenzene) and explore different starting molecular concentrations. We show that the electrical conductance of the molecular junctions exhibits variations among different compounds, which are significant at standard concentrations but become unimportant when working at a low enough concentration. This shows that the main effect of the functional groups is to affect the packing of the molecular wires, rather than to modify their electrical properties. Our theoretical calculations consistently predict no significant changes in the conductance of the wires due to the electronic structure of the functional groups, although their ability to hinder ring rotations within the OPE backbone can lead to higher conductances at higher packing densities

    Partitioning the Proteome: Phase Separation for Targeted Analysis of Membrane Proteins in Human Post-Mortem Brain

    Get PDF
    Neuroproteomics is a powerful platform for targeted and hypothesis driven research, providing comprehensive insights into cellular and sub-cellular disease states, Gene × Environmental effects, and cellular response to medication effects in human, animal, and cell culture models. Analysis of sub-proteomes is becoming increasingly important in clinical proteomics, enriching for otherwise undetectable proteins that are possible markers for disease. Membrane proteins are one such sub-proteome class that merit in-depth targeted analysis, particularly in psychiatric disorders. As membrane proteins are notoriously difficult to analyse using traditional proteomics methods, we evaluate a paradigm to enrich for and study membrane proteins from human post-mortem brain tissue. This is the first study to extensively characterise the integral trans-membrane spanning proteins present in human brain. Using Triton X-114 phase separation and LC-MS/MS analysis, we enriched for and identified 494 membrane proteins, with 194 trans-membrane helices present, ranging from 1 to 21 helices per protein. Isolated proteins included glutamate receptors, G proteins, voltage gated and calcium channels, synaptic proteins, and myelin proteins, all of which warrant quantitative proteomic investigation in psychiatric and neurological disorders. Overall, our sub-proteome analysis reduced sample complexity and enriched for integral membrane proteins by 2.3 fold, thus allowing for more manageable, reproducible, and targeted proteomics in case vs. control biomarker studies. This study provides a valuable reference for future neuroproteomic investigations of membrane proteins, and validates the use Triton X-114 detergent phase extraction on human post mortem brain

    First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes

    Full text link
    We overview nonequilibrium Green function combined with density functional theory (NEGF-DFT) modeling of independent electron and phonon transport in nanojunctions with applications focused on a new class of thermoelectric devices where a single molecule is attached to two metallic zigzag graphene nanoribbons (ZGNRs) via highly transparent contacts. Such contacts make possible injection of evanescent wavefunctions from ZGNRs, so that their overlap within the molecular region generates a peak in the electronic transmission. Additionally, the spatial symmetry properties of the transverse propagating states in the ZGNR electrodes suppress hole-like contributions to the thermopower. Thus optimized thermopower, together with diminished phonon conductance through a ZGNR/molecule/ZGNR inhomogeneous structure, yields the thermoelectric figure of merit ZT~0.5 at room temperature and 0.5<ZT<2.5 below liquid nitrogen temperature. The reliance on evanescent mode transport and symmetry of propagating states in the electrodes makes the electronic-transport-determined power factor in this class of devices largely insensitive to the type of sufficiently short conjugated organic molecule, which we demonstrate by showing that both 18-annulene and C10 molecule sandwiched by the two ZGNR electrodes yield similar thermopower. Thus, one can search for molecules that will further reduce the phonon thermal conductance (in the denominator of ZT) while keeping the electronic power factor (in the nominator of ZT) optimized. We also show how often employed Brenner empirical interatomic potential for hydrocarbon systems fails to describe phonon transport in our single-molecule nanojunctions when contrasted with first-principles results obtained via NEGF-DFT methodology.Comment: 20 pages, 6 figures; mini-review article prepared for the special issue of the Journal of Computational Electronics on "Simulation of Thermal, Thermoelectric, and Electrothermal Phenomena in Nanostructures", edited by I. Knezevic and Z. Aksamij
    corecore