70 research outputs found

    Type specific Real time PCR for detection of human herpes virus 6 in schizophrenia and bipolar patients: A case control study

    Get PDF
    Background: Schizophrenia (SC) and bipolar disorder (BD) are among the most devastating diseases worldwide. There are several lines of evidence suggesting that viruses may play significant roles in the etiology of these mental disorders. The aim of this study was the detection of HHV-6A/B in the peripheral blood mononuclear cells (PBMC) of SC and BD patients versus the healthy control (HC) subjects using a new method of type-specific Real time PCR analysis. Methods: A type-specific Real time PCR was performed for simultaneous detection and typing of HHV-6A/B in the PBMCs of 120 SC and BD patients and 75 HCs. Results: Only one case of HHV-6B out of 120 (0.8 ) SC and BD patients and two cases of HHV-6A (2.7 ) in 75 HCs were detected. Conclusions: The low levels of HHV-6 detection in PBMCs, severely limited the capacity of this study to investigate the association between the presence of HHV-6 and BD or SC in this population, thus no conclusions can be drawn in this regard. Meanwhile this study introduces a Real time PCR based method for type specific detection of HHV-6A/B in clinical samples. © 2015 Yavarian et al

    Laminated Perovskite Photovoltaics: Enabling Novel Layer Combinations and Device Architectures

    Get PDF
    High‐efficiency perovskite‐based solar cells can be fabricated via either solution‐processing or vacuum‐based thin‐film deposition. However, both approaches limit the choice of materials and the accessible device architectures, due to solvent incompatibilities or possible layer damage by vacuum techniques. To overcome these limitations, the lamination of two independently processed half‐stacks of the perovskite solar cell is presented in this work. By laminating the two half‐stacks at an elevated temperature (≈90 °C) and pressure (≈50 MPa), the polycrystalline perovskite thin‐film recrystallizes and the perovskite/charge transport layer (CTL) interface forms an intimate electrical contact. The laminated perovskite solar cells with tin oxide and nickel oxide as CTLs exhibit power conversion efficiencies of up to 14.6%. Moreover, they demonstrate long‐term and high‐temperature stability at temperatures of up to 80 °C. This freedom of design is expected to access both novel device architectures and pairs of CTLs that remain usually inaccessible

    Impact of atorvastatin loaded exosome as an anti-glioblastoma carrier to induce apoptosis of U87 cancer cells in 3D culture model

    Get PDF
    Exosomes (EXOs) are naturally occurring nanosized lipid bilayers that can be efficiently used as a drug delivery system to carry small pharmaceutical, biological molecules and pass major biological barriers such as the blood-brain barrier. It was hypothesized that EXOs derived from human endometrial stem cells (hEnSCs-EXOs) can be utilized as a drug carrier to enhance tumor-targeting drugs, especially for those have low solubility and limited oral bioactivity. In this study, atorvastatin (Ato) loaded EXOs (AtoEXOs) was prepared and characterized for its physical and biological activities in tumor growth suppression of 3 D glioblastoma model. The AtoEXOs were obtained in different methods to maximize drug encapsulation efficacy. The characterization of AtoEXOs was performed for its size, stability, drug release, and in vitro anti-tumor efficacy evaluated comprising inhibition of proliferation, apoptosis induction of tumor cells. Expression of apoptotic genes by Real time PCR, Annexin V/PI, tunnel assay was studied after 72 h exposing U87 cells where encapsulated in matrigel in different concentrations of AtoEXOs (5, 10 μM). The results showed that the prepared AtoEXOs possessed diameter ranging from 30�150 nm, satisfying stability and sustainable Ato release rate. The AtoEXOs was up taken by U87 and generated significant apoptotic effects while this inhibited tumor growth of U87 cells. Altogether, produced AtoEXOs formulation due to its therapeutic efficacy has the potential to be an adaptable approach to treat glioblastoma brain tumors. © 2020 The Author

    Chemical vapor deposited polymer layer for efficient passivation of planar perovskite solar cells

    Get PDF
    Reducing non-radiative recombination losses by advanced passivation strategies is pivotal to maximize the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Previously, polymers such as poly(methyl methacrylate), poly(ethylene oxide), and polystyrene were successfully applied in solution-processed passivation layers. However, controlling the thickness and homogeneity of these ultra-thin passivation layers on top of polycrystalline perovskite thin films is a major challenge. In response to this challenge, this work reports on chemical vapor deposition (CVD) polymerization of poly(p-xylylene) (PPX) layers at controlled substrate temperatures (14–16 °C) for efficient surface passivation of perovskite thin films. Prototype double-cation PSCs using a ∼1 nm PPX passivation layer exhibit an increase in open-circuit voltage (VOC_{OC}) of ∼40 mV along with an enhanced fill factor (FF) compared to a non-passivated PSC. These improvements result in a substantially enhanced PCE of 20.4% compared to 19.4% for the non-passivated PSC. Moreover, the power output measurements over 30 days under ambient atmosphere (relative humidity ∼40–50%) confirm that the passivated PSCs are more resilient towards humidity-induced degradation. Considering the urge to develop reliable, scalable and homogeneous deposition techniques for future large-area perovskite solar modules, this work establishes CVD polymerization as a novel approach for the passivation of perovskite thin films

    Oncolytic adenovirus: A tool for cancer therapy in combination with other therapeutic approaches

    Get PDF
    Cancer therapy using oncolytic viruses is an emerging area, in which viruses are engineered to selectively propagate in tumor tissues without affecting healthy cells. Because of the advantages that adenoviruses (Ads) have over other viruses, they are more considered. To achieve tumor selectivity, two main modifications on Ads genome have been applied: small deletions and insertion of tissue- or tumor-specific promoters. Despite oncolytic adenoviruses ability in tumor cell lysis and immune responses stimulation, to further increase their antitumor effects, genomic modifications have been carried out including insertion of checkpoint inhibitors and antigenic or immunostimulatory molecules into the adenovirus genome and combination with dendritic cells and chemotherapeutic agents. This study reviews oncolytic adenoviruses structures, their antitumor efficacy in combination with other therapeutic strategies, and finally challenges around this treatment approach. © 2018 Wiley Periodicals, Inc

    Optimization of SnO2_{2} electron transport layer for efficient planar perovskite solar cells with very low hysteresis†

    Get PDF
    Nanostructured tin oxide (SnO2_{2}) is a very promising electron transport layer (ETL) for perovskite solar cells (PSCs) that allows low-temperature processing in the planar n–i–p architecture. However, minimizing current–voltage (J–V) hysteresis and optimizing charge extraction for PSCs in this architecture remains a challenge. In response to this, we study and optimize different types of single- and bilayer SnO2_{2} ETLs. Detailed characterization of the optoelectronic properties reveals that a bilayer ETL composed of lithium (Li)-doped compact SnO2_{2} (c(Li)-SnO2_{2}) at the bottom and potassium-capped SnO2_{2} nanoparticle layers (NP-SnO2_{2}) at the top enhances the electron extraction and charge transport properties of PSCs and reduces the degree of ion migration. This results in an improved PCE and a strongly reduced J–V hysteresis for PSCs with a bilayer c(Li)-NP-SnO2_{2} ETL as compared to reference PSCs with a single-layer or undoped bilayer ETL. The champion PSC with c(Li)-NP-SnO2_{2} ETL shows a high stabilized PCE of up to 18.5% compared to 15.7%, 12.5% and 16.3% for PSCs with c-SnO2_{2}, c(Li)-SnO2_{2} and c-NP-SnO2_{2} as ETL, respectively

    Letter to the Editor

    Get PDF
    Background Disaster, whether man made or natural, may occur at any place or time. This study was conducted to assess the preparedness of hospitals in handling emergencies as per District Disaster Management Plan (DDMP) at Mangalore, a coastal city on the Western coast of Karnataka. Method A cross sectional study was conducted in 12 hospitals of Mangalore city, located at the Southwestern coast of India in April 2009, using a semi-structured proforma. All surveyed hospitals were included in the DDMP. The respondents were hospital administrators. Results Though all the hospitals surveyed were aware about the existence of DDMP in the district of Dakshina Kannada, 6 (50%) were unaware that their hospitals were included in the same plan. Out of 12 hospitals, 4 (33.3%) said that they had got a letter from DDMP, spelling out their responsibilities. Only 6 (50%) hospitals had a contingency plan for emergency. Mock drill was conducted only by 6 (50%) hospitals. Six (50%) hospitals had blood bank, 5 (41.6%) had trauma center and 8 (66.6%) had burns ward available for emergency. Half of them had more than 2 ambulances and 10(83.3%) had sufficient stock of medicines. Extra beds for emergency were available in 11(91.7%) hospitals with maximum number of 42 beds in one hospital. Conclusion; Most hospitals in Mangalore were not well prepared to manage emergencies in disasters. Facilities like burns ward, blood bank and ambulance services need to be enhanced

    Co-infection of adenovirus with swine origin influenza A (H1N1) and report of adenovirus with respiratory syncytial virus: report of two cases

    No full text
    "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Respiratory virus infections represent a major public health problem because of their worldwide occurrence, ease of spread in the community and considerable morbidity and mortality. They are one of the most common reasons for hospitalization of children under the age of six. In some cases, infection with two different viruses increase the severity of disease which lead to the hospitalization."n"nCase presentation: Among 202 samples related to children under the age of six with respiratory infections, two dual infections of Adenovirus with other respiratory viruses with PCR test were detected."n"nConclusion: Mixed respiratory viral infections are sometimes associated with severe disease and recognition of coinfection is important. Dual infections of Adenovirus with respiratory syncytial virus (RSV) and Swine origin influenza A (H1N1) virus were demonstrated. The evidence showed that the co-infection of Adenovirus with swine origin influenza A (H1N1), has increased the severity of disease which lead to the hospitalization
    corecore