1,231 research outputs found

    Suboptimality of Nonlocal Means for Images with Sharp Edges

    Get PDF
    We conduct an asymptotic risk analysis of the nonlocal means image denoising algorithm for the Horizon class of images that are piecewise constant with a sharp edge discontinuity. We prove that the mean square risk of an optimally tuned nonlocal means algorithm decays according to n1log1/2+ϵnn^{-1}\log^{1/2+\epsilon} n, for an nn-pixel image with ϵ>0\epsilon>0. This decay rate is an improvement over some of the predecessors of this algorithm, including the linear convolution filter, median filter, and the SUSAN filter, each of which provides a rate of only n2/3n^{-2/3}. It is also within a logarithmic factor from optimally tuned wavelet thresholding. However, it is still substantially lower than the the optimal minimax rate of n4/3n^{-4/3}.Comment: 33 pages, 3 figure

    Electrochemical Process for Diazinon Removal from Aqueous Media: Design of Experiments, Optimization, and DLLME-GC-FID Method for Diazinon Determination

    Get PDF
    In the present study, electrochemical process was studied via removal of diazinon (O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate) as an insecticide/ acaricide organic case study. Influences of three operational parameters including initial ferrous ion concentration, initial hydrogen peroxide concentration, and initial diazinon concentration were measured and optimized in diazinon removal process. Response surface methodology (RSM) was used to design the experiments. The experimental data collected in a laboratory-scaled batch reactor equipped with four graphite bar electrodes as cathode and an aluminum sheet electrode as an anode. Quantitative analysis of diazinon was done with gas chromatography equipped with flame photometric detector. Disperse liquid–liquid microextraction was used prior to gas chromatography in order to extraction and preconcentration of diazinon from aqueous media to extraction phase. Acetone and chlorobenzene were used as disperser and extraction solvent, respectively. Maximum diazinon removal efficiency of 87% (0.85mg mass removal) in C0 of 2mg/L and 80% (120mg mass removal) in C0 of 300mg/L was achieved under different experimental conditions. The obtained experimental data were used for model building by RSM approach. Finally, optimization process was carried out using RSM algorithm. © 2015, King Fahd University of Petroleum & Minerals

    New ion trap for atomic frequency standard applications

    Get PDF
    A novel linear ion trap that permits storage of a large number of ions with reduced susceptibility to the second-order Doppler effect caused by the radio frequency (RF) confining fields has been designed and built. This new trap should store about 20 times the number of ions a conventional RF trap stores with no corresponding increase in second-order Doppler shift from the confining field. In addition, the sensitivity of this shift to trapping parameters, i.e., RF voltage, RF frequency, and trap size, is greatly reduced

    A study of the influence of Hg(6(3)P2) population in a low-pressure discharge on mercury ion emission at 194.2 nm

    Get PDF
    A low-pressure mercury-argon discharge, similar to the type existing in the mercury lamp for the trapped-ion standard, is probed with a new technique of laser spectroscopy to determine the influence of the Hg(6 3P(sub 2)) population on discharge emission. The discharge is excited with inductively coupled rf power. Variations in the intensity of emission lines in the discharge were examined as lambda = 546.1 nm light from a continuous wave (CW) laser excited the Hg(6 3P(sub 2)) to (7 3S (sub 1)) transition. The spectrum of the discharge viewed in the region of laser irradiation showed increased emission in lambda = 546.1, 435.8, 404.7, 253.7, and 194.2 nm lines. Other lines in Hg I exhibited a decrease in emission. When the discharge was viewed outside the region of laser irradiation, all lines exhibited an increased emission. Based on these results, it is concluded that the dominant mechanism for the excitation of higher lying levels of mercury is the the electron-impact excitation via the 3P(sub 2) level. The depopulation of this metastable is also responsible for the observed increase in the electron temperature when the laser irradiates the discharge. It is also concluded that the 3P(sub 2) metastable level of mercury does not play a significant role in the excitation of the 3P(sub 1/2) level of mercury ion

    Simple analytic potentials for linear ion traps

    Get PDF
    A simple analytical model was developed for the electric and ponderomotive (trapping) potentials in linear ion traps. This model was used to calculate the required voltage drive to a mercury trap, and the result compares well with experiments. The model gives a detailed picture of the geometric shape of the trapping potenital and allows an accurate calculation of the well depth. The simplicity of the model allowed an investigation of related, more exotic trap designs which may have advantages in light-collection efficiency

    Atomic frequency standards for ultra-high-frequency stability

    Get PDF
    The general features of the Hg-199(+) trapped-ion frequency standard are outlined and compared to other atomic frequency standards, especially the hydrogen maser. The points discussed are those which make the trapped Hg-199(+) standard attractive: high line Q, reduced sensitivity to external magnetic fields, and simplicity of state selection, among others

    The JPL trapped mercury ion frequency standard

    Get PDF
    In order to provide frequency standards for the Deep Space Network (DSN) which are more stable than present-day hydrogen masers, a research task was established under the Advanced Systems Program of the TDA to develop a Hg-199(+) trapped ion frequency standard. The first closed-loop operation of this kind is described. Mercury-199 ions are confined in an RF trap and are state-selected through the use of optical pumping with 194 nm UV light from a Hg-202 discharge lamp. Absorption of microwave radiation at the hyperfine frequency (40.5 GHz) is signaled by atomic fluorescence of the UV light. The frequency of a 40.5 GHz oscillator is locked to a 1.6 Hz wide atomic absorption line of the trapped ions. The measured Allan variance of this locked oscillator is currently gamma sub y (pi) = 4.4 x 10 to the minus 12th/square root of pi for 20 is less than pi is less than 320 seconds, which is better stability than the best commercial cesium standards by almost a factor of 2. This initial result was achieved without magnetic shielding and without regulation of ion number

    Effect of different hydrocolloids on barbari bread texture and microstructure

    Get PDF
    Applying several hydrocolloids in ascending concentrations (0.1, 0.5 and 1% w/w flour basis) to bread making procedure was considered. Effect of hydrocolloids [guar, xanthan gum, carboxylmethylcellulose (CMC), and hydroxypropylmethylcellulose (HPMC)] as bread improver on Barbari (Iranian bread) was analysed in terms of microstructure. Image analysis parameters, hardness, and microstructure of fresh bread were analysed. The results confirmed the ability of hydrocolloids for improving fresh bread quality. Among all used hydrocolloids, HPMC and CMC produced the softest texture, smoothest and continuous structure, and improved overall the bread quality
    corecore