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We conduct an asymptotic risk analysis of the nonlocal means image denoising algorithm
for the Horizon class of images that are piecewise constant with a sharp edge discontinuity.
We prove that the mean square risk of an optimally tuned nonlocal means algorithm
decays according to n−1 log1/2+ε n, for an n × n-pixel image with ε > 0. This decay rate
is an improvement over some of the predecessors of this algorithm, including the linear
convolution filter, median filter, and the SUSAN filter, each of which provides a rate of only
n−2/3. It is also within a logarithmic factor from optimally tuned wavelet thresholding.
However, it is still substantially lower than the optimal minimax rate of n−4/3.

Published by Elsevier Inc.

1. Introduction

1.1. Image denoising

The long history of image denoising is testimony to its central importance in image processing. A wide range of algo-
rithms have been developed, ranging from simple linear convolution and median filtering to total variation denoising [14]
and sparsity exploiting algorithms such as wavelet shrinkage [7]. Due to the sensitivity of human visual system to edges,
the ability to preserve sharp edges is an important criterion for noise removal algorithms. Therefore Korostelev and Tsy-
bakov proposed a framework to characterize the performance of image denoisers on edges [10]. Based on this framework,
we aim to characterize the performance of several denoising algorithms that represent the current state of the art image
enhancement techniques. In particular, we will focus on the popular and powerful nonlocal means (NLM) algorithm.

1.2. The minimax framework

In this paper, we are interested in estimating a function f : [0,1]2 → R from noisy pixel level observations. Define
Pixel(i, j) = [ i

n , i+1
n ) × [ j

n ,
j+1
n ), and let xi, j = Ave( f | Pixel(i, j)) be the pixel level averages of f . We observe the samples

yi, j = xi, j + zi, j,
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where, zi, j is iid N(0, σ 2). The goal is to recover the original pixel values xi, j from the observations yi, j , based on some

information about the function f . For a given function f and an estimator f̂ we define the risk function as

Rn( f , f̂ ) = E

(
1

n2

∑
i

∑
j

(xi, j − f̂ i, j)
2
)

. (1)

The risk can also be written as

Rn( f , f̂ ) =
(

1

n2

∑
i

∑
j

(xi, j −E f̂ i, j)
2
)

+E

(
1

n2

∑
i

∑
j

( f̂ i, j −E f̂ i, j)
2
)

, (2)

where the first and second terms correspond to the bias and variance of the estimator f̂ , respectively.
Let f belong to a class of functions F , e.g., a class of edge-like images that represent edges with different shapes and

orientations. The risk defined in (1) depends on the specific choice of f . We define the risk of an estimator f̂ on the class F
as the risk of the worst-case signal, i.e.,

Rn(F, f̂ ) = sup
f ∈F

Rn( f , f̂ ).

The minimax risk over functions in F is then defined as the risk of the best possible estimator, i.e.,

R∗
n(F) = inf

f̂
sup
f ∈F

Rn( f , f̂ ).

The minimax risk is a lower bound for the performance of all measurable estimators for signals in F .
In this paper we are interested in the asymptotic setting where the number of pixels n → ∞. For all of the estimators

we consider, Rn(F , f̂ ) → 0 as n → ∞. Therefore, we consider the decay rate of the risk as the performance measure. We
will derive the minimax risk for several popular image denoising techniques below.

We will use the following asymptotic notation in this paper.

Definition 1. f (n) = O (g(n)) as n → ∞, if and only if there exist n0 and c such that for any n > n0, | f (n)| � c|g(n)|.
Likewise, f (n) = Ω(g(n)) as n → ∞, if and only if there exist n0 and c such that for any n > n0, | f (n)| � c|g(n)|. Finally,
f (n) = Θ(g(n)), if f (n) = O (g(n)) and f (n) = Ω(g(n)). We will interchangeably use f (n) � g(n) for f (n) = Θ(g(n)).

Definition 2. f (n) = o(g(n)) if and only if limn→∞ f (n)
g(n)

= 0.

1.3. Horizon edge model

Several different image edge models have been developed in the image processing and denoising literature. Here we will
use the Horizon model that contains piecewise constant images with edges that are smooth in the direction of the edge
contour but discontinuous in the direction orthogonal to the edge contour [10,6]. Specifically, let Hölderα(C) be the class of
Hölder smooth functions on R, defined as follows: h ∈ Hölderα(C) if and only if∣∣h(k)(t1) − h(k)

(
t′

1

)∣∣ � C
∣∣t1 − t′

1

∣∣α−k
,

where k = �α	. Given a one-dimensional smooth edge contour function h, we define the image fh : [0,1]2 → R as
fh(t1, t2) = 1{t2<h(t1)} , where 1{·} is the indicator function. Based on this construction, we define the Horizon class of func-
tions as

Hα(C) = {
fh(t1, t2): h ∈ Hölderα(C) ∩ Hölder1(1)

}
, (3)

where α is the smoothness of the edge contour. Fig. 1 plots a representative function from this class.
The following theorem, proved in [10], specifies the minimax risk of the class of all measurable estimators on Hα(C).

Theorem 1. (See [10].) For α � 1, the minimax risk of the class Hα(C) is

R∗
n

(
Hα(C)

) � n
−2α
α+1 . (4)

We are particularly interested in the case of α = 2 edges, for which the optimal rate is n−4/3. The rate provided in the
above theorem is the Holy Grail of image denoising algorithms.
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Fig. 1. An example of a Horizon function, a piecewise constant image containing an edge that is Hölderα smooth in the direction of the edge contour but
discontinuous in the direction orthogonal to the edge contour.

1.4. A menagerie of denoising algorithms

We will perform a minimax risk analysis of not just nonlocal means but a number of other popular image denoising
algorithms.

1.4.1. Linear filtering
The classical denoising method is the linear convolution filter, which estimates the image via

f̂ LF
g (i, j) =

∑
m

∑
�

gm,� yi−m, j−�, (5)

where g is a two-dimensional filter impulse response that satisfies
∑

i

∑
j gi, j = 1.1 When all the weights gij are equal,

the algorithm is called the running average or the box filter. Most of the linear filters used in practice are symmetrical and
approximately isotropic.

Definition 3. Let g be a real and symmetric filter response, i.e., gi, j = g−i, j = gi,− j , and let Ĝ(ω1,ω2) represent its two-
dimensional Fourier transform. The filter is isotropic if and only if there exists a function F :R →C, such that

Ĝ(ω1,ω2) = F
(√

ω2
1 + ω2

2

)
∀ −π < ω1,ω2 � π.

Isotropic filters are popular, because they treat image features similarly regardless of their directions. Let grad(·) be the
gradient operator. The following theorem, proved in Section 4.1, provides the decay rate of the risk of linear convolution.

Theorem 2. Consider the linear convolution filter (5) and suppose that g is real, symmetric, and isotropic. Furthermore, assume that
‖grad(Ĝ(w1, w2))‖2 � C for a fixed constant C . Then,

inf
g

sup
f ∈Hα(C)

Rn
(

f , f̂ LF
g

) � n− 2
3 .

Castro and Donoho [1] have proved a similar result for the special case of the box filter. While the Horizon model used
in [1] is slightly different from our model, their proof works in our setting as well.

1.4.2. Yaroslavsky/SUSAN filter
While linear filters are popular in image processing due to their simplicity, they unfortunately blur images with sharp

edges. One popular alternative is to adapt the weight of each pixel in the average (5) according to the distance between its
noisy value and the value of the pixel we aim to estimate. Let C
n

i, j � {(m, �) | i − 
n � m � i + 
n, j − 
n � � � j + 
n}
denote the 
n-neighborhood of the pixel (i, j). One popular approach for setting the weights is

wY
i, j(m, �) = e

− (ym,�−yi, j )
2

2τ2 ,

1 For simplicity of analysis, we use a periodic extension of y at the image boundaries.
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from which we calculate the estimate

f̂ Y

n,τ (i, j) =

∑i+
n
m=i−
n

∑ j+
n
�= j−
n

wY
i, j(m, �)ym,�∑i+
n

m=i−
n

∑ j+
n
�= j−
n

wY
i, j(m, �)

. (6)

Only the pixels in the 
n-neighborhood of (i, j) contribute to the estimate of that pixel. Parameter τ controls the im-
portance of the pixel value difference in setting the weights. As τ → ∞ this estimator converges to the linear estimator
discussed in the last section. This algorithm is called the Yaroslavsky Filter (YF) or SUSAN filter [18,15]; slight modifications
are known as the bilateral filter [17] and σ -filter [12].

To calculate the risk of the YF, we consider a slightly different, oracle-based algorithm. Suppose that in setting the
weights wY

i, j(m, �) of the YF we have access to the actual (and not the noisy) value of the pixel (i, j). Using this oracle
information we can set the weights according to

w SY
i, j (m, �) = e

− (ym,�−xi, j )
2

2τ2 .

Intuitively, the oracle weights are “less noisy” than the actual filter weights. Plugging these weights into (6) we obtain what
we call the semi-oracle Yaroslavsky filter (SYF). The following theorem, proved in Section 4.2, shows that, as far as the decay
rate is concerned, the SYF’s performance is the same as the linear filter and box filter.

Theorem 3. The risk of SYF algorithm satisfies

inf
τ ,
n

sup
f ∈Hα(C)

Rn
(

f , f̂ SY ) = Ω
(
n−2/3).

1.4.3. Sparsity based denoising
Another popular class of image denoising methods exploits sparsity in some transform domain via thresholding. Wavelets

are often used as the sparsity domain for natural images. Let W(y) represent the separable two-dimensional wavelet trans-
form of the image, let IW represent the inverse wavelet transform, and let T be the hard thresholding function, i.e.,
Tθ (x) = x1{|x|>θ} . Then wavelet thresholding denoising corresponds to

f̂ W
θ = IW

(
Tθ

(
W(y)

))
.

Donoho and Johnstone have proven that sup f ∈Hα(C) Rn( f , f̂ W ) = Ω(n−1) [6,13]. Even though this rate is an improvement

over the above algorithms, is still far from the optimal achievable rate of n− 4
3 for α = 2.

This suboptimality spurred the development of other sparsity-inducing transformations, including curvelets [4], wedgelets
[6], shearlets [8,9,11], and contourlets [5]. Among these transforms, wedgelet denoising provably achieves the optimal rate

of n− 4
3 for α = 2 [6]. However, wedgelet denoising performs poorly on textures, which has limited its application in practice

to date.

2. Nonlocal means denoising

The YF estimator sets its weights according the noisy pixel values and their spatial vicinity; however neither of these two
features are reliable for noisy, edgy images. In contrast, the nonlocal means (NLM) algorithm sets its weights according to the
proximity of the image patch surrounding each noisy pixel with other patches in the image [3]. Define the δn-neighborhood
distance dδn (yi, j, yn,p) between two observations as

d2
δn

(yi, j, yn,p) = 1

ρ2
n

δn∑
m=−δn

δn∑
�=−δn

|yi+�, j+m − yn+�,p+m|2 − |yi, j − yn,p|2,

where ρ2
n = (2δn + 1)2 − 1. Note that, in contrast to the definition in [3], we have removed the center element |yi, j − yn,p|2

from the summation. Since we assume that δn → ∞ as n → ∞, the effect is negligible on the asymptotic performance. But,
as we will see in Section 4, removing the center element simplifies the calculations considerably. NLM uses the neighbor-
hood distances to estimate

f̂ N
i, j =

∑
(m,�)∈S w N

i, j(m, �)ym,�∑
(m,�)∈S w N

i, j(m, �)
, (7)

where S = {1,2, . . . ,n}×{1,2, . . . ,n} and wi, j(m, �) is set according to the δn-neighborhood distance between yi, j and ym,� .
For simplicity of notation, in cases where both the reference pixel (i, j) and the algorithm are obvious from the context,
we will omit the superscript and subscript of the weight and use the simplified notation wm,� instead of w N (m, �). It is
i, j
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straightforward to verify that E(d2
δn

(yi, j, ym,�)) = d2
δn

(xi, j, xm,�) + 2σ 2, which suggests the following strategy for setting the
weights:

w N
i, j(m, �) =

{
1 if d2

δn
(yi, j, ym,�) � 2σ 2 + tn,

0 otherwise,
(8)

where tn is the threshold parameter. Soft/tapered techniques for setting the weights have been explored and are often used
in practice [3]. However, the above untapered weights capture the essence of the algorithm while simplifying the analysis.
We postpone the discussion of tapered weights until Section 5.

There are two main differences between the NLM and YF algorithms. First, the pixels that contribute in the NLM averag-
ing are not necessarily in the local neighborhood of the reference pixel (hence the monicker “nonlocal”). Second, the NLM
weights depend not on the difference between the pixel values but on distance between the pixel neighborhoods. In other
words the pixel neighborhood is even more important than the pixel value.

To derive a lower bound for the risk of NLM, we will analyze two algorithms that set the weights using some degree
of oracle information regarding the true value of the signal. The full oracle NLM (FNLM) has access to E(d2

δn
(yi, j, ym,�)) in

setting the weights wm,l in (7) and thus sets them using the noise-free values of the pixels

w F
i, j(m, �) =

{
1 if d2

δn
(xi, j, xm,�) � tn,

0 otherwise.
(9)

The semi-oracle NLM (SNLM) differs only slightly from the standard NLM in that it uses the semi-oracle neighborhood
distance

d̄2
δn

(yi, j, yn,p) � 1

ρ2
n

(
δn∑

m=−δn

δn∑
�=−δn

|xi+�, j+m − yn+�,p+m|2 − (xi, j − yn,p)2

)
, (10)

and then sets the weights in (7) according to

w S
i, j(m, �) =

{
1 if d̄2

δn
(yi, j, ym,�) � σ 2 + tn,

0 otherwise.
(11)

Unlike FNLM, SNLM assumes that just one-half of the noise is removed from the distance estimates. Therefore, the distances
calculated in the SNLM are more accurate than in the standard NLM but less accurate than in the FNLM. In the rest of the
paper, we will use f̂ N , f̂ S , and f̂ F to denote the NLM, SNLM, and FNLM estimators, respectively.

3. Main results

Our first result, proved in Section 4.3, establishes an upper bound on the risk of NLM.

Theorem 4. Fix ε > 0 and consider NLM denoising with δn = 2 log
1
2 +ε n and tn = 2σ 2

log
ε
2 n

. The risk of this algorithm over the class

Hα(C) is

sup
f ∈Hα(C)

R
(

f , f̂ N) = O

(
log

1
2 +ε n

n

)
. (12)

Before we discuss the implications of this theorem, it is important to note that, while we can improve the decay rate as

close as we desire to O (n−1log
1
2 n), the constants that are involved in the big-O notation grow as ε decreases. Therefore, in

practice very small values of ε are not desirable.
Comparing the upper bound (12) with the optimal minimax risk (4) indicates that NLM is suboptimal for α > 1. In other

words, NLM cannot exploit the smoothness of edge contours in images.
The bound in Theorem 4 is for a specific choice of parameters, and it is natural to ask whether NLM can achieve the

optimal rate with some other choice of parameters. To answer this question, we consider SNLM, which outperforms standard
NLM in general. We make the following mild assumptions:

A1: The window size δn → ∞ as n → ∞. This assumption is critical to ensuring good performance of any NLM estimator.
A2: The threshold is set to σ 2 + tn as explained in (11) with tn > 0. This ensures that if the neighborhood of pixel (m, �) is

exactly the same as the neighborhood of pixel (i, j), then wm,� = 1 with high probability.
A3: The threshold tn is set such that, if the noise-free neighborhoods are different in more than half of their pixels, i.e., if

d2(xi, j, xm,�) � 1
2 , then P(w F

i, j(m, �) = 1) = o(n−1).

A4: δn = O (nβ), for some β � 0.3.
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Fig. 2. The simple image Horizon 1{t2<0.5} used for proving the various lower bounds.

The following theorem provides a lower bound on the performance of SNLM.

Theorem 5. Suppose that δn and tn satisfy assumptions A1–A4. The risk of the SNLM over the class Hα(C) is

inf
δn,tn

sup
f ∈Hα(C)

R
(

f , f̂ S) = Ω
(
n−1).

This bound is still suboptimal compared to the n−4/3 minimax rate for α = 2. In the words of John Cornyn III, the junior
United States Senator for Texas, “The problem with a mini-deal is we have a maxi-problem” [2].

Remarkably, this lower bound is achieved on a very simple image on which NLM would be assumed to work very well:
1{t2<0.5} (see Fig. 2). Here is what goes wrong. Consider the estimation of an “edge" pixel (i, j) that satisfies j = 
nh( i

n )�.
Define the set J = {(m, �) | � = �nh(m

n )	} as the set of pixels just below the edge. We will prove the probability that a pixel
in J contributes to the NLM estimate (wi, j(m, �) = 1) is larger than p0, where p0 does not depend on n. This happens due
to the low “signal to noise ratio” in the distance estimates. Hence Θ(n) pixels of J will contribute to the NLM estimate.
Since these pixels have xm,� = 1, they introduce a large bias in the estimate. In fact, we show below that the bias, as defined
in (2), will be larger than np0

n+np0+np0
. Here np0 corresponds to the pixels below the edge that pass the threshold. This shows

that the bias is clearly Θ(1). Since there are n edge pixels, the risk of the estimator over the entire image is Ω(n−1).

4. Proofs of the main theorems

4.1. Proof of Theorem 2

The proof has two main steps. The first step is to prove that there exists a linear filter for which the supremum risk is
upper bounded by O (n−2/3). For this step we use Theorem 3.1 and Theorem 3.2 from [1], which establish the same upper
bound for the box filter. The second and more challenging step is to prove that no other linear filter can improve on this
decay rate. The rest of this section is dedicated to the proof of this fact.

Consider the function fh(t1, t2) for h(t) = 1
2 and suppose that n is even. This function is displayed in Fig. 2. Let

X(k1,k2) = 1

n

∑
�1

∑
�2

x�1,�2 e− j
2πk1�1

n e− j
2πk2�2

n

represent the Discrete Fourier Transform (DFT) of a discrete two-dimensional signal x. Since y = x + z, the DFT of f̂ LF
g equals

F̂ LF
g (k1,k2) = Y (k1,k2)G(k1,k2) = X(k1,k2)G(k1,k2) + Z(k1,k2)G(k1,k2),

where Z is again iid N(0, σ 2). For fh(t1, t2) with h(t1) = 1
2 , X(k1,k2) satisfies

X(k1,k2) =
⎧⎨
⎩

0 if k1 �= 0,

1−e− jπk2

1−e− j
2πk2

n

if k1 = 0. (13)

It is easy to see that Rn( f , f̂ LF
g ) = 1

n2 E(‖X − F̂ LF
g ‖2

F ), where ‖Y ‖2
F �

∑
k1,k2

|Y (k1,k2)|2. If we define B( f̂ ) as the bias of the

estimator f̂ , then we have
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B2( f̂ LF
g

) = 1

n2

∑
1�k2�n,odd

∣∣1 − G(0,k2)
∣∣2 1

sin2 πk2
n

� 1

n2

∑
1�k2�n2/3,odd

∣∣1 − G(0,k2)
∣∣2 1

sin2 πk2
n

.

The variance of the estimator is

Var
(

f̂ LF
g

) = 1

n2

∑
k1,k2

∣∣G(k1,k2)
∣∣2

σ 2.

We know that

1

n2

∑
k1,k2

∣∣G(k1,k2)
∣∣2 =

∫ ∫ ∣∣Ĝ(ω1,ω2)
∣∣2

dω1 dω2 + O
(
n−1), (14)

where Ĝ is the continuous Fourier transform of g and satisfies ‖grad(Ĝ)‖2 � C . Since g is isotropic, there exists F : R → C
such that

Ĝ(ω1,ω2) = F
(√

ω2
1 + ω2

2

)
.

Changing the variables of integration in (14) to polar coordinate radius r =
√

ω2
1 + ω2

2 and angle θ , we have

∫ ∫ ∣∣Ĝ(ω1,ω2)
∣∣2

dω1 dω2 � 2π

2π∫
r=0

r
∣∣F (r)

∣∣2
dr = 2π

2π∫
ω2=0

ω2
∣∣Ĝ(0,ω2)

∣∣2
dω2. (15)

Combining (14) and (15) we have

Var
(

f̂ LF
h

) = 1

n2

∑
k1,k2

∣∣G(k1,k2)
∣∣2

σ 2 = 4π2

n2

∑
k2

k2
∣∣G(0,k2)

∣∣2
σ 2 − O

(
n−1).

Summing the lower bounds for the bias and variance of this estimator, we obtain the following lower bound for the risk
of linear filtering:

Rn
(

f , f̂ LF) = B2( f̂ LF
g

) + Var
(

f̂ LF
g

)
� 1

n2

∑
1�k2�n2/3,odd

∣∣1 − G(0,k2)
∣∣2 1

sin2 πk2
n

+ 4π2

n2

∑
k2

k2
∣∣G(0,k2)

∣∣2
σ 2 − O

(
n−1)

= 1

n2

∑
1�k2�n2/3,odd

∣∣1 − G(0,k2)
∣∣2 n2

π2k2
2

+ 4π2

n2

∑
k2

k2
∣∣G(0,k2)

∣∣2
σ 2 − O

(
n−1).

Minimizing the dominant term of the lower bound over the filter weights provides

G∗(0,k2) = 1

1 + 4π4σ 2k3
2

n2

for odd values of k2 and zero for even values of k2. To find a lower bound we calculate the bias term with these optimal
weights:

B2( f̂ LF
g∗

) = 1

n2

∑
1�k2�n2/3,odd

∣∣1 − G(0,k2)
∣∣2 n2

π2k2
2

= 1

n2

∑
1�k2�n2/3,odd

(
4π4σ 2k3

2/n2

1 + 4π4σ 2k3
2/n2

)2 n2

π2k2
2

� 1

n2

∑
1�k2�n2/3,odd

(
4π4σ 2k3

2/n2

1 + 4π4σ 2

)2 n2

π2k2
2

= 1

n4

(
4π4σ 2

1 + 4π4σ 2

)2 ∑
1�k2�n2/3,odd

k4
2

=
(

4π4σ 2

1 + 4π4σ 2

)2(n−2/3

40
+ o

(
n−2/3)).

This completes the proof.
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4.2. Proof of Theorem 3

In this section, denote the pixel to be estimated as xi, j . For clarity we use the notation wm,� instead of w SY
i, j (m, �). We

first characterize some of the properties of the SYF weights.

Lemma 1. Suppose that xi, j = 0. If xm,� = xi, j , then E(wm,� ym,�) = 0. Furthermore, if |xi, j − xm,�| = 1, then E(wm,� ym,�) >

τ√
σ 2+τ 2

e
−1

2(σ2+τ2) .

Proof. The first claim is clear from symmetry. To prove the second claim, we observe that E(wm,� ym,�) = E(wm,�xm,�) +
E(wm,�zm,�). Since xm,� = 1, we calculate E(wm,�) and E(wm,�zm,�). It is clear that E(wm,�zm,�) = 1

σ
√

2π
×

∫ ∞
−∞ zm,�e

− (zm,�−1)2

2τ2 − z2
m,�

2σ2 dzm,� � 0. Therefore we calculate

E(wm,�) = 1

σ
√

2π

∞∫
−∞

e
− (zm,�−1)2

2τ2 − z2
m,�

2σ2 dzm,� = e
− 1

2τ2 + σ2

2(σ2+τ2)τ2

σ2π

∞∫
−∞

e
−σ2+τ2

2σ2τ2 (z2
m,�− 2σ2

σ2+τ2 zm,�+ σ4

(σ2+τ2)2 )
dzm,�

= e
− 1

2(σ2+τ2)

σ

√
σ 2τ 2

σ 2 + τ 2
= τe

− 1
2(σ2+τ2)√

σ 2 + τ 2
.

This completes the proof. �
Let S = {1,2, . . . ,n} × {1,2, . . . ,n} and define the 
-neighborhood of a pixel (m, �) as C


m,� = {(i, j): |i − m| � 
,

| j − �| � 
} ∩ S .

Lemma 2. Let Ωn = (2
n + 1)2 . We then have

P

(
1

Ωn

( ∑
(m,�)∈C
n

i, j

w SY
m,� −

∑
(m,�)∈C
n

i, j

Ew SY
m,�

)
� t

)
� 2e−2Ωnt2

.

The proof is a simple application of the Hoeffding inequality.

Proof of Theorem 3. The first claim is that the optimal neighborhood size satisfies 
n = Ω(log n). We prove this by contra-
diction. Suppose that 
n = O (log(n)) and consider the performance of the SYF on the image xi, j = 0 for every (i, j). It is
clear that the bias is zero. However, the variance is lower bounded by Ω( 1

log2 n
). This is far from the optimal performance

of the linear filters analyzed in Theorem 2. Therefore 
n = Ω(log(n)).
Now consider the example image shown in Fig. 2 with fh(t1, t2) = 1{t2<0.5} . For notational simplicity we assume that

n is even so that the value of each pixel is either 0 or 1. Define the two regions P1 = {(i, j): n
2 � j � n

2 + 
n
2 } and

P2 = {(i, j): j > n
2 + 
n}. At least 1/4 of the pixels in the neighborhood of the pixels in P1 have the noise-free value

of 1. All pixels in the neighborhood of the pixels in P2 have the noise-free pixel values equal to 1. Over each region we will
find a lower bound for the risk of SYF and then sum them to obtain a lower bound for the risk over the entire image.

Case I – (i, j) ∈ P1: From the Jensen inequality we have

E

(
xi, j −

∑
(m,�)∈C
n

i, j
wm,� ym,�∑

(m,�)∈C
n
i, j

wm,�

)2

�
(
E

∑
(m,�)∈C
n

i, j
wm,� ym,�∑

(m,�)∈C
n
i, j

wm,�

)2

.

Define the following two constants:

m0 = E
(

w SY
i, j (m, �)

∣∣ xi, j = 0, xm,� = 0
)
,

m1 = E
(

w SY
i, j (m, �)

∣∣ xi, j = 0, xm,� = 1
)
.

It is clear that m0 > m1. Let the event A be

A =
{ ∑

(m,�)∈C
n
i, j

wm,� −
∑

(m,�)∈C
n
i, j

Ewm,� � 
2−ε
n

}
(16)

for some ε > 0. We have
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E

(∑
(m,�)∈C
n

i, j
wm,� ym,�∑

(m,�)∈C
n
i, j

wm,�

)
� E

(∑
(m,�)∈C
n

i, j
wm,� ym,�∑

(m,�)∈C
n
i, j

wm,�

∣∣∣ A

)
P(A)

(a)
� E

(∑
(m,�)∈C
n

i, j
wm,� ym,�

4
2
nm0 + 
2−ε

n

∣∣∣ A

)
P(A)

� E

(∑
(m,�)∈C
n

i, j
wm,� ym,�

4
2
nm0 + 
2−ε

n

)
− P

(
Ac) (b)

�
(


2
nc0

4
2
nm0 + 
2−ε

n

)
− P

(
Ac).

Inequality (a) uses Lemma 2 and the fact that m0 � m1. Inequality (b) uses Lemma 1, and therefore c0 = τ√
σ 2+τ 2e

− −1
2(σ2+τ2)

.

Since C
n
i, j has (2
n + 1)2 pixels, at least 
2

n of them have the noise-free pixel value 1. Since 
n = Ω(log n), Lemma 2
proves that P (Ac) = o(1) and, therefore, the bias is lower bounded by Θ(1) for all of the pixels in P1.

Case II – (i, j) ∈ P2: As mentioned before, all pixels in the neighborhood of the pixels in P2 have the noise-free pixel
values equal to 1. Hence, we have

E

(∑
(m,�)∈C
n

i, j
wm,� yi, j∑

(m,�)∈C
n
i, j

wm,�

)2

= E

(∑
(m,�)∈C
n

i, j
wm,�zm,�∑

(m,�)∈C
n
i, j

wm,�

)2

.

Defining the event A as in (16), we have

E

((∑
(m,�)∈C
n

i, j
wm,�zm,�∑

(m,�)∈C
n
i, j

wm,�

)2 ∣∣∣ A

)
P(A) � E

((∑
(m,�)∈C
n

i, j
wm,�zm,�

4
2
nm0 + 
2−ε

n

)2 ∣∣∣ A

)
P(A)

� E

(∑
(m,�)∈C
n

i, j
wm,�zm,�

4
2
nm0 + 
2−ε

n

)2

− P
(

Ac) = 4
2
nE(wm,�zm,�)

2

(4m0

2
n + 
2−ε

n )2
− P

(
Ac).

If the neighborhood size is larger than c log(n) for some constant c, then Lemma 2 will imply that P(Ac) < o( 1
n2 ). Therefore,

the dominant term in the above expression is of the form γ


2
n

. Combining the lower bounds for P1 and P2, we obtain a

lower bound of the form of β
n
n + γ


2
n

. Optimizing over 
n proves that

inf

n,τ

Rn
(

f , f̂ SY )
> Ω

(
n−2/3).

This completes the proof. �
It is clear from the proof above that the neighborhood size is the main parameter that controls the decay rate of the

risk of the YF. The Gaussian term in the YF weights enables an improvement in the constants but does not play any role in
the decay rate. In the extreme case of 
n = n, when all of the image pixels can potentially contribute to the estimation of
a pixel, the decay rate of YF degrades to Θ(1). This algorithm is called the range filter, and [17] observed in practice that
it performs much worse than even linear filters, as the above analysis confirms. Interestingly, NLM addresses this issue and
therefore its search space could be the entire image. This is the main reason for its improved performance.

The lower bound proved in Theorem 3 is the same as the upper bound we derived for the performance of linear filtering.
Therefore, we have the following theorem.

Theorem 6. The risk of the SYF satisfies

inf

n,τ

sup
f ∈Hα(C)

Rn
(

f , f̂ SY ) � n−2/3.

4.3. Proof of Theorem 4

The proof has two main steps. First, we show that the risk of the pixels far from the edge is O (log1+2ε(n)/n2). Second,
we show that the risk of the pixels whose δn-neighborhood senses the edge is constant; however there are at most O (nδn)

of these pixels. The following two lemmas will play key roles in our analysis.

Lemma 3. Let Z ∼ N(0, σ 2). For λ < 1
2σ 2 , we have

E
(
eλZ 2) = 1√

1 − 2λσ 2
.
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Fig. 3. An example of a Horizon image. The δn-neighborhood of pixel (ia, ja) ∈ S4 does not intersect the edge contour, while the δn-neighborhood of pixel
(ib, jb) ∈ S3 intersects the edge contour.

Proof. The proof is a simple integral calculation:

E
(
eλZ 2) = 1

σ
√

2π

∞∫
−∞

e(λ− 1
2σ2 )Z 2

dZ = 1

σ
√

1
σ 2 − 2λ

. �

Lemma 4. Let Z1, Z2, . . . , Zn be iid N(0,1) random variables. The χ2
n random variable defined as

∑n
i=1 Z 2

i concentrates around its
mean with high probability, i.e.,

P

(
1

n

∑
i

Z 2
i − 1 > t

)
� e− n

2 (t−ln(1+t)),

P

(
1

n

∑
i

Z 2
i − 1 < −t

)
� e− n

2 (t+ln(1−t)).

Proof. Here we prove just the first claim; the proof of the second claim follows along very similar lines. From Markov’s
Inequality, we have

P

((
1

n

n∑
i=1

Z 2
i

)
− 1 > t

)
� e−λt−λ

E
(
e

λ
n

∑n
i=1 Z 2

i
) = e−λt−λ

(
E
(
e

λZ2
1

n
))n = e−λt−λ

(1 − 2λ
n )

n
2
. (17)

The last inequality follows from Lemma 3. The upper bound proved above holds for any λ < n
2 . To obtain the lowest upper

bound we minimize e−λt−λ

(1− 2λ
n )

n
2

over λ. The optimal value of λ is λ� = arg minλ
e−λt−λ

(1− 2λ
n )

n
2

= nt
2(t+1)

. Plugging λ∗ into (17) proves

the result. �
Proof of Theorem 4. We will consider the following partition of the image pixels. Let S = {1,2, . . . ,n} × {1,2, . . . ,n}. For
a given Horizon function fh(t1, t2), define S1 = {(i, j) | j

n > h( i
n ) + 2δn

n }, S2 = {(i, j) | h( i
n ) <

j
n � h( i

n ) + 2δn
n }, S3 = {(i, j) |

h( i
n ) − 2δn

n � j
n � h( i

n )}, and S4 = {(i, j) | j
n < h( i

n ) − 2δn
n }. These regions are displayed in Fig. 3. The δn-neighborhood of the

pixels in S1 and S4 do not intersect the edge, while the δn-neighborhood of the other pixels may have pixels from both
sides of the edge. For the notational simplicity we write

∑
(i, j)∈S�

for the double summation over i, j where j satisfies the
constraints specified for S� .

Consider a pixel (i, j) ∈ S1. The risk of NLM at this pixel is

E

(
xi, j −

∑
wm,� ym,�∑

wm,�

)2

,

where xi, j = 0, since (i, j) ∈ S1. Define the set of oracle weights

w�
m,� =

{
1 if �

n > h(m
n ),

0 otherwise.
(18)

Define U �
(∑

wm,� ym,�∑ )2
, and let the event A = {wm,� = w� , ∀(m, �) ∈ S1 ∪ S4}. We then have
wm,� m,�
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E(U ) = E(U | A)P(A) +E
(
U

∣∣ Ac)
P
(

Ac) � E(U | A)P(A) + P
(

Ac), (19)

where the last inequality is due to the fact that the risk of the estimator is bounded by 1. We now calculate each term of
(19) separately. Define S14 = S1 ∪ S4 and S23 = S2 ∪ S3. Then we have

E(U | A)P(A) = E

((∑
(m,�)∈S14

w�
m,� ym,� + ∑

(m,�)∈S23
wm,� ym,�∑

(m,�)∈S14
w�

m,� + ∑
(m,�)∈S23

wm,�

)2 ∣∣∣ A

)
P(A)

� E

(∑
(m,�)∈S14

w�
m,� ym,� + ∑

(m,�)∈S23
wm,� ym,�∑

(m,�)∈S14
w�

m,� + ∑
(m,�)∈S23

wm,�

)2

� E

(∑
(m,�)∈S14

w�
m,�xm,� + ∑

(m,�)∈S23
wm,�xm,�∑

(m,�)∈S14
w�

m,� + ∑
(m,�)∈S23

wm,�

)2

+E

(∑
(m,�)∈S14

w�
m,�zm,� + ∑

(m,�)∈S23
wm,�zm,�∑

(m,�)∈S14
w�

m,� + ∑
(m,�)∈S23

wm,�

)2

+ 2

√√√√
E

(∑
(m,�)∈S14

w�
m,�xm,� + ∑

(m,�)∈S23
wm,�xm,�∑

(m,�)∈S14
w�

m,� + ∑
(m,�)∈S23

wm,�

)2

×
√√√√
E

(∑
(m,�)∈S1∪S4

w�
m,�zm,� + ∑

(m,�)∈S23
wm,�zm,�∑

(m,�)∈S14
w�

m,� + ∑
(m,�)∈S23

wm,�

)2

. (20)

The last inequality is due to Cauchy–Schwartz. In the next two lemmas we bound the last three terms of (20).

Lemma 5. Let wm,� be the weights of NLM with δn = log
1
2 +ε n and tn = 2√

log
ε
2 n

for ε > 0. Also, let w�
m,� be the oracle weights

introduced in (18). Then

E

(∑
(m,�)∈S14

w�
m,�xm,� + ∑

(m,�)∈S23
wm,�xm,�∑

(m,�)∈S14
w�

m,� + ∑
(m,�)∈S23

wm,�

)2

= O

(
δ2

n

n2

)
.

Proof. Define S f as the set of indices of the pixels whose noise-free value is neither zero nor one. Since the images are
chosen from the Horizon class, the cardinality of this set is at most 2n. Plugging in the values of xm,� , we have

E

(∑
(m,�)∈S14

w�
m,�xm,� + ∑

(m,�)∈S23
wm�xm,�∑

(m,�)∈S14
w�

m,� + ∑
(m,�)∈S23

wm,�

)2

(a)= E

( ∑
(m,�)∈S14

w�
m,�xm,� + ∑

(m,�)∈S3\S f
wm,� + ∑

(m,�)∈S f
wm,�xm,�∑

(m,�)∈S14
w�

m,� + ∑
(m,�)∈S3\S f

wm,� + ∑
(m,�)∈S2\S f

wm,� + ∑
(m,�)∈S f

wm�

)2

(b)

� E

(∑
(m,�)∈S14

w�
m,�xm,� + ∑

(m,�)∈S3
1 + ∑

(m,�)∈S f
wm�xm,�∑

(m,�)∈S14
w�

m,� + ∑
(m,�)∈S3

1 + ∑
(m,�)∈S f

wm,�

)2

� E

(∑
(m,�)∈S14

w�
m,�xm,� + ∑

(m,�)∈S3
1 + 2n∑

(m,�)∈S14
w�

m,� + ∑
(m,�)∈S3

1

)2

= O

(
δ2

n

n2

)
,

where inequality (b) is due to the fact that the expression after equality (a) is an increasing function of
∑

(m,�)∈S3\S f
wm�

and a decreasing function of
∑

(m,�)∈S2\S f
wm� . Therefore, we set wm,� = 1 for (m, �) ∈ S3 and wm,� = 0 for (m, �) ∈ S2. �

Lemma 6. Let wm,� be the weights of NLM with δn = log
1
2 +ε n and tn = 2√

log
ε
2 n

for ε > 0. Also, let w�
m,� be the oracle weights

introduced in (18). Then we have

E

(∑
(m,�)∈S14

w�
m,�zm,� + ∑

(m,�)∈S23
wm,�zm,�∑

(m,�)∈S14
w�

m,� + ∑
(m,�)∈S23

wm,�

)2

= O

(
1

n2

)
.

Proof. Since
∑

(m,�)∈S23
wm,� � 0 and we are interested in the upper bound of the risk, we can remove it from the denom-

inator to obtain
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E

((∑
(m,�)∈S14

w�
m,�zm,� + ∑

(m,�)∈S23
wm,�zm,�∑

(m,�)∈S14
w�

m,� + ∑
(m,�)∈S23

wm,�

)2)

� E

((∑
(m,�)∈S14

w�
m,�zm,� + ∑

(m,�)∈S23
wm,�zm,�∑

(m,�)∈S14
w�

m,�

)2)

= E

((∑
(m,�)∈S14

w�
m,�zm,�∑

(m,�)∈S14
w�

m,�

)2)
+E

((∑
(m,�)∈S23

wm,�zm,�∑
(m,�)∈S14

w�
m,�

)2)

+ 2E

((∑
(m,�)∈S14

w�
m,�zm,�∑

(m,�)∈S14
w�

m,�

)(∑
(m,�)∈S23

wm,�zm,�∑
(m,�)∈S14

w�
m,�

))
. (21)

Since
∑

(m,�)∈S14
w�

m,�zm,�∑
(m,�)∈S14

w�
m,�

is the average of iid random variables, it is not hard to prove that E
(∑

(m,�)∈S14
w�

m,�zm,�∑
(m,�)∈S14

w�
m,�

)2 = O
(
σ 2

n2

)
. To

bound the other two terms in (21) we use the notation defined in the last section: C

m,� = {(i, j): |i − m| < 
, | j − �| <


} ∩ S . We also define E(· | C

m,�) as the conditional expectation given the variables in C


m,� . We then have

E

((∑
(m,�)∈S23

wm,�zm,�∑
(m,�)∈S14

w�
m,�

)2)

= E

(
E

((∑
(m,�)∈S23

wm,�zm,�∑
(m,�)∈S14

w�
m,�

)2 ∣∣∣ Cδn
i, j

))

= E

(
E(

∑
(m′,�′)∈S23

∑
(m,�)∈S23

wm,�zm,�wm′,�′ zm′,�′ | Cδn
i, j)

(
∑

(m,�)∈S14
w�

m,�)
2

)

= E

(E(
∑

(m′,�′)∈C2δn
m,�

∑
(m,�)∈S23

wm,�zm,�wm′,�′ zm′,�′ | Cδn
i, j)

(
∑

(m,�)∈S14
w�

m,�)
2

)

=
(∑

(m′,�′)∈C2δn
m,�

∑
(m,�)∈S23

E(wm,�zm,�wm′,�′ zm′,�′)

(
∑

(m,�)∈S14
w�

m,�)
2

)
� O

(
δ3

n

n3

)
.

For the last inequality we have used the Cauchy–Schwartz inequality to prove that E(wm,�zm,�wm′,�′ zm′,�′) � 3σ 2. Although

we could derive a loose bound for E
((∑

(m,�)∈S23
wm,�zm,�∑

(m,�)∈S14
w�

m,�

)2)
and still draw the same conclusion, we used the above technique

since we have to use it in the proof of Theorem 7. The last term we have to bound in (21) is

E

((∑
(m,�)∈S14

w�
m,�zm,�∑

(m,�)∈S14
w�

m,�

)(∑
(m,�)∈S23

wm,�zm,�∑
(m,�)∈S14

w�
m,�

))

�

√√√√
E

(∑
(m,�)∈S14

w�
m,�zm,�∑

(m,�)∈S14
w�

m,�

)2
√√√√
E

(∑
(m,�)∈S23

wm,�zm,�∑
(m,�)∈S14

w�
m,�

)2

� O

(
1

n2

)
.

This proves the lemma. �
Using Lemma 5 and Lemma 6 in (20) proves that

E(U | A)P(A) = O

(
δ2

n

n2

)
. (22)

Finally, using Lemma 4 and the union bound it is easy to show that

P
(

Ac) = O

(
1

n2

)
. (23)

It is important to note that the constants of this probability are hidden in the big-O notation. These constants depend on ε
and increase as ε decreases. Therefore, we cannot set ε = 0.
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Plugging in (23) and (22) in (19) results in

E

(
xi, j −

∑
wm,� ym,�∑

wm,�

)2

= O

(
log1+2ε(n)

n2

)
∀(i, j) ∈ S1.

Now consider (i, j) ∈ S2 ∪ S3. In this region we can bound the error by the worst possible risk, which is 1. We will discuss
the sharpness of this bound in the next section where we develop a lower bound for the risk.

Using the bounds provided above for the risks of the pixels in S1, S2, S3, and S4, we can now calculate the final upper
bound for the risk of the NLM as

sup
f ∈Hα(C)

R
(

f , f̂ N L) = 1

n2

∑
i

∑
j

E
(
xi, j − f̂ N

i, j

)2 � log1+2ε(n)(|S1| + |S4|)
n4

+ |S2| + |S3|
n2

� O

(
log

1
2 +ε(n)

n

)
.

In order to derive the last inequality we noted that since h(t1) ∈ Hölder1(1) the cardinality of S2 and S3 are O (nδn). This
completes the proof of Theorem 4. �
4.4. Proof of Theorem 5

Suppose that the parameters of SNLM satisfy Assumptions A1–A4. To derive a lower bound we consider the performance
of the SNLM algorithm on the simple image in Fig. 2. For notational simplicity we assume that n is even, and hence all of
the pixel values are either 0 or 1. The proof follows four main steps:

1. We consider the pixels that are just above the edge, i.e., (i, 
 n
2 �), and prove that the risk of the NLM on these pixels is

lower bounded by a constant that does not depend on n.
2. Using asymptotic arguments we prove that the probability a pixel just below the edge passes the threshold tn > 0 is

larger than p0, where p0 is a non-zero probability independent of n. Based on this, we use a concentration argument
to prove that Θ(n) of the pixels just below the edge will pass the threshold with high probability. See the formal
statement in Theorem 1.

3. Using symmetry arguments we prove that the probability that a pixel � < δn/2 rows2 above the edge or below the edge
passes the threshold is equal. This is formally stated in Lemma 8.

4. Combining the outcomes of Steps 2 and 3 we show that the risk is minimized if all the pixels just above the edge pass
the threshold and the probability that the other pixels pass the threshold is as low as possible. If more zero pixels above
the edge pass the threshold, then more pixels with noise-free value 1 will also pass the threshold, and this makes the
bias large. Therefore we assume that pn,� , the probability that a pixel at distance � of the edge passes the threshold, is
equal to zero for � > 1. However, we have already proven that for � = 1 the probability is larger than p0. Theorem 5
uses this fact to show that the risk of this estimator is larger than a constant independent of n.

Proposition 1. Let j∗ = 
 n
2 �. For any pixel with coordinates of the form (i∗, j∗), there exists a non-zero constant probability p0 such

that for any δn and tn

P

(∑
m

wm, j∗−1 − np0 < −t

)
� 4δne− t2

4nδn .

Proof. For notational simplicity we use i = i∗ and j = j∗ in the proof. We have

P
(
d̄2

δn
(yi, j, ym, j−1) � σ 2 + tn

)
= P

(
1

ρ2
n

(∑
�,p

|xi+p, j+� − ym+p, j−1+�|2 − (xi, j − yp, j−1)
2
)

� σ 2 + tn

)

= P

(
1

ρ2
n

∑
�,p

(
s2
�,p − σ 2) − 2

ρ2
n

∑
�

s�,0 � − 1

ρn
+ tn

)

� P

(
1

ρ2
n

∑
�,p

(
s2
�,p − σ 2) − 2

ρ2
n

∑
�

s�,0 � − 1

ρn

)
,

where s�,m = zm+�, j−1+p . According to the Berry–Esseen Central Limit Theorem for independent non-identically distributed
random variables [16], we know that

2 The �th row of an image is the set of all pixels of the form (i, �).
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P

(
1

ρ2
n

∑
�

∑
p

(
s2
�,p − σ 2) − 2

ρ2
n

∑
�

s�,0 � − 1

ρn

)
� P(G � −1) − C

ρn
,

where G is a Gaussian random variable with mean zero and bounded standard deviation. In fact, it is not difficult to confirm
that

E
(
G2) = 2σ 4 + 8σ 2δn − 2σ 4

(2δn + 1)2
.

Since P(G � −1) � 2p0 (2p0 is P (G ′ � −1) where G ′ ∼ N(0,2σ 4)) is non-zero, for large values of n we can ensure that
C/n < p0 and therefore P(d̄2

δn
(yi, j, ym, j−1) � σ 2 +tn) > p0. We now prove that even though the weights are correlated, Θ(n)

of the weights will be equal to 1 with very high probability. Define ui as wi, j−1 and define the process U = (u1, . . . , un).
Break this sequence into 2δn subsequences Ui = (ui, ui+2δn , ui+4δn , . . . , un−2δn+i). Each Ui has i.i.d. elements. Therefore,

according to the Hoeffding Inequality, we have P(|∑u j∈Ui
u j − E(u j)| > t) � 2e

−t2δn
n . On the other hand we know that

E(ui) > p0. Therefore,

P

( ∑
u j∈Ui

u j <
n

2δn
p0 − t

)
� 2e

−t2δn
n .

Finally we use the union bound to obtain

P

(∑
ui − np0 � −t

)
� P

(∑
i

∑
u j∈U1

u j − n

2δn
p0 � −t

)

� P

(⋃
i

{
ω:

∑
u j∈Ui

u j − n

2δn
p0 � − t

2δn

})
� 4δne− t2

4nδn . �

Define the set J = {(i, j) | j = � jh( i
n )	}. It is clear that | J | = n. The following corollary to Proposition 1 shows that NLM

sets the weights of most of the pixels in J to 1.

Corollary 1. Consider the image displayed in Fig. 2, and let δn = O (nα) for α < 1. For any δn and tn > 0, Θ(n) of the pixels in J will
pass the threshold tn with very high probability.

Proof. Set t = n
3+α

4 in Proposition 1. �
Remarkably the above corollary holds in a very general setting even if the assumptions A1–A4 do not hold. In other

words, NLM in its most general form is not able to distinguish between the pixels right above the edge from the pixels right
below the edge. This is due to the fact that the “signal to noise ratio" in the δn-neighborhood distance estimates is too low
at the edge pixels. This is the result of the isotropic neighborhoods used to form the weight estimates.

Lemma 7. If |m − i∗| > δn/2 and |m′ − i∗| > δn/2, then

P
(
d̄2

δn
(yi∗, j∗ , ym, j∗−�) � σ 2 + tn

) = P
(
d̄2

δn
(yi∗, j∗ , ym′, j∗−�) � σ 2 + tn

)
for any �,m,m′ .

The proof of this lemma is obvious and is skipped here.

Lemma 8. For � < δn/2,

P
(
d̄2

δn
(yi∗, j∗ , ym, j∗−�) � σ 2 + tn

) = P
(
d̄2

δn
(yi∗, j∗ , ym, j∗+�) � σ 2 + tn

)
.

The proof of this lemma is also obvious from symmetry and is skipped here. We can now prove Theorem 5, which
provides a lower bound for the risk of SNLM.

Proof of Theorem 5. We derive a lower bound for the risk of SNLM on the image displayed in Fig. 2. To do so, we consider
the pixels just above the edge and prove that the SNLM algorithm has risk Θ(1) at these pixels. Since there are Θ(n) of
these pixels, the risk over the entire image is larger than Θ(n−1).
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Consider a pixel (i∗, j∗) with j∗ = 
 n
2 �. The risk of the SNLM is

E

(
f i∗, j∗ −

∑∑
wm,� ym,�∑∑

wm,l

)2

�
(
E

(∑∑
wm,� ym,�∑∑

wm,l

))2

. (24)

Note that wm,� is independent of the ym,� according to the construction of the SNLM weights in (10). Let pn,� be the
probability P(w�,i = 1) for � ∈ { j∗ − δn, j∗ − δn + 1, . . . , j∗ + δn}. We can partition the row {(i, �) | 1 � i � n} into 2δn + 1
subsequences and apply Hoeffding inequality on each subsequence. We combine the results of different subsequences with
the union bound to prove that

P

(∣∣∣∣∑
m

wm,� − npn,�

∣∣∣∣ > t

)
� 4δne

−t2
4nδn . (25)

Define the event A as

A =
{∣∣∣∣∑

m

wm,� − npn,�

∣∣∣∣ < n0.66 ∀�,
∣∣� − j∗

∣∣ � δn

}
.

Using the union bound and (25) we have

P
(

Ac) � 8δ2
n e

−n1.32
4nδn .

Any lower bound on the bias of the estimator leads to a lower bound on its risk. Therefore, we find a lower bound for the
bias as follows:

E

(∑∑
wm,� ym,�∑∑

wm,�

)
� E

(∑∑
wm,� ym,�∑∑

wm,�

∣∣∣ A

)
P(A)

� E

( ∑∑
wm,� ym,�∑

npn,� + n0.66δn

∣∣∣ A

)
P(A) � E

( ∑∑
wm,� ym,�∑

npn,� + n0.66δn

)
− P

(
Ac),

where for the last inequality we have used the fact that the risk of SNLM is bounded by 1. Since, from the construction of
SNLM in (10), wm,� is independent of zm,� , we have

E

( ∑∑
wm,� ym,�∑

npn,� + n0.66δn

)
− P

(
Ac) = E

( ∑∑
wm,�xm,�∑

npn,� + n0.66δn

)
− P

(
Ac)

=
∑

�< j∗ npn,�∑
npn,� + n0.66δn

− P
(

Ac) �
∑

�< j∗ npn,�

n + 2
∑

�< j∗ npn,� + n0.66δn
− P

(
Ac).

Proposition 1 proves that both the numerator
∑

�< j∗ npn,� and the denominator
∑

npn,� + n0.66δn are Ω(n). Therefore,
according to Assumption A3, we can ignore the summations

∑
�< j∗− δn

2
npn,� and

∑
�> j∗+ δn

2
npn,� . By combining this fact

with Lemma 8, we obtain∑
�< j∗ npn,�∑

npn,� + n0.66δn
− P

(
Ac) �

∑
�< j∗ npn,�

npn, j∗ + 2
∑

�< j∗ npn,� + n0.66δn
− P

(
Ac)

�
∑

�< j∗ npn,�

n + 2
∑

�< j∗ npn,� + n0.66δn
− P

(
Ac).

In the last inequality we assumed that pn, j∗ = 1. To find a lower bound for
∑

�< j∗ npn,�

n+2
∑

�< j∗ npn,�+n0.66δn
it is enough to note that∑

�< j∗ npn,�

n+2
∑

�< j∗ npn,�+n0.66δn
is an increasing function of

∑
�< j∗ npn,� and therefore is minimized if and only if

∑
�< j∗ npn,� takes its

minimum value. However, according to Proposition 1 the minimum value of this term is Θ(n). Therefore, we have∑
�< j∗ npn,�

n + 2
∑

�< j∗ npn,� + n0.66δn
− P

(
Ac) � np0

np0 + n + n0.66δn
− p

(
Ac) = p0

p0 + 1

(
1 + o(1)

)
.

This completes the proof. �
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5. Tapered NLM weights

In this section we show that the upper bound we provided for the NLM in Theorem 4 holds in the more general setting
of tapered weights. We now allow the weights to be a smooth function of the δn-neighborhood. We assume that the weight
assignment policy satisfies the following properties:

B1: The neighborhood size δn = 2 log(n).
B2: The weights are non-negative and bounded, i.e., 0 � wm,� � α.
B3: If d2(xi, j, xm,�) = 0, then the assigned weight satisfies E(wi, j(m, �)) > c, for some constant c independent of n.
B4: If d2(xi, j, xm,�) = 1, then E(wi, j(m, �)) = O

( 1√
n

)
. Note that slower decay rate in this expectation, results in slower decay

in the rate of the NLM algorithm.

Theorem 7. If the weight assignment policy in NLM satisfies properties B1–B4, then

sup
f ∈Hα(C)

R
(

f , f̂ N) = O

(
log n

n

)
.

Proof. Consider the four partitions S1–S4 defined in the proof of Theorem 4. Our goal is to obtain an upper bound for
the risk of the pixels in each region. The risk of the pixels in S2 and S3 will be bounded by the strategy we employed in
Theorem 4. Here, we just explain how we bound the risk of the pixels in S1 and S4. Since the proof for S4 is the same as
the proof for S1, we consider just S1. Let (i, j) ∈ S1. Therefore xi, j = 0 and

E
(
xi, j − f̂ N

i, j

)2 = E

(∑
wm,� ym,�∑

wm,�

)2

= E

(∑
wm,�xm,�∑

wm,�

)2

+E

(∑
wm,�zm,�∑

wm,�

)2

+E

((∑
wm,�xm,�∑

wm,�

)(∑
wm,�zm,�∑

wm,�

))
. (26)

To obtain an upper bound for the risk, we will find upper bounds for the last three terms in (26). Lemmas 9 and 10 below
summarize the upper bounds.

Lemma 9. Let wm,� be the weights of NLM satisfying properties B1–B4. Then

E

(∑
wm,�xm,�∑

wm,�

)2

= O

(
1

n

)
.

Proof. Define S f as the set of the indices of the pixels whose noise-free value is neither 0 nor 1, and plug in the actual
values of xm,� to obtain

E

(∑
(m,�)∈S1∪S4

wm,�xm,� + ∑
(m,�)∈S2∪S3\S f

wm,�xm,� + ∑
(m,�)∈S f

wm,�xm,�∑
(m,�)∈S1∪S4

wm,� + ∑
(m,�)∈S2∪S3\S f

wm,� + ∑
(m,�)∈S f

wm,�

)2

� E

(∑
(m,�)∈S4

wm,� + ∑
(m,�)∈S3\S f

wm,� + ∑
(m,�)∈S f

wm,�xm,�∑
(m,�)∈S1∪S4

wm,� + ∑
(m,�)∈S2∪S3

wm,� + ∑
(m,�)∈S f

wm,�

)2

� E

(∑
(m,�)∈S4

wm,� + ∑
(m,�)∈S3

α + 2nα∑
(m,�)∈S1∪S4

wm,� + ∑
(m,�)∈S3

α

)2

. (27)

To derive the last inequality we use the following facts, which are easy to check:

1.
(∑

(m,�)∈S4
wm,�+∑

(m,�)∈S3\S f
wm,�+∑

(m,�)∈S f
wm,�xm,�∑

(m,�)∈S1∪S4
wm,�+∑

(m,�)∈S2∪S3
wm,�+∑

(m,�)∈S f
wm,�

)2
is an increasing function of

∑
(m,�)∈S3\S f

wm,� .

2.
(∑

(m,�)∈S4
wm,�+∑

(m,�)∈S3\S f
wm,�+∑

(m,�)∈S f
wm,�xm,�∑

(m,�)∈S1∪S4
wm,�+∑

(m,�)∈S2∪S3
wm,�+∑

(m,�)∈S f
wm,�

)2
is a decreasing function of

∑
(m,�)∈S2\S f

wm,� .

3. |S f | � 2n, i.e., S f contains at most 2n pixels.

Our next claim is that
∑

(m,�)∈S4
wm,� and

∑
(m,�)∈S1

wm,� concentrate around their means. We establish this in a manner

very similar to the proof of Theorem 5. We first break the
∑

(m,�)∈S4
wm,� into (4δn + 2)2 subsequences such that each

subsequence contains only independent random variables. In other words if xm,� is in one summation, then no other element
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of C4δn+2
i, j will be in the summation. Therefore, for each summation we can apply the Hoeffding inequality. Finally, we use

the union bound as explained in the proof of Theorem 5 to show that

P

(∣∣∣∣ ∑
(m,�)∈S1

wm,� −
∑

(m,�)∈S1

E(wm,�)

∣∣∣∣ > t

)
� 2(4δn + 2)2e

−2t2

(4δn+2)4(
∑

(m,�)∈S1
α2)

,

P

(∣∣∣∣ ∑
(m,�)∈S4

wm,� −
∑

(m,�)∈S1

E(wm,�)

∣∣∣∣ > t

)
� 2(4δn + 2)2e

−2t2

(4δn+2)4(
∑

(m,�)∈S1
α2)

.

It is straightforward to prove that by setting t to 32αn log2.5(n), we have

P

(∣∣∣∣ ∑
(m,�)∈S1

wm,� −
∑

(m,�)∈S1

E(wm,�)

∣∣∣∣ > 32αn log2.5(n)

)
� O

(
δ2

n

n8

)
,

P

(∣∣∣∣ ∑
(m,�)∈S4

wm,� −
∑

(m,�)∈S1

E(wm,�)

∣∣∣∣ > 32αn log2.5(n)

)
� O

(
δ2

n

n8

)
. (28)

Define the event F as {|∑(m,�)∈S1
wm,� − ∑

(m,�)∈S1
E(wm,�)| < 32αn log2.5 n} ∩ {|∑(m,�)∈S4

wm,� − ∑
(m,�)∈S1

E(wm,�)| <

32αn log2.5 n}. It is clear from (28) that

P
(

F c) = O

(
δ2

n

n8

)
. (29)

Using (27), (28), and (29) we have

E

(∑
(m,�)∈S4

wm,� + ∑
(m,�)∈S3\S f

α + 2nα∑
(m,�)∈S1∪S4

wm,� + ∑
(m,�)∈S3\S f

α

)2

� E

((∑
(m,�)∈S4

wm,� + ∑
(m,�)∈S3\S f

α + 2nα∑
(m,�)∈S1∪S4

wm,� + ∑
(m,�)∈S3\S f

α

)2 ∣∣∣ F

)
P(F ) + P

(
F c)

� O

(
1

n

)
.

The last inequality is due to properties B3 and B4. This completes the proof of the lemma. �
Lemma 10. Let wm,� be the weights of NLM with δn = log(n). Also assume that the weights are set according to B1–B4. We then have

E

(∑
wm,�zm,�∑

wm,�

)2

= O

(
log2(n)

n2

)
.

Proof. We first condition on the event F introduced in the proof of Lemma 9.

E

((∑
wm,�zm,�∑

wm,�

)2)
� E

((∑
wm,�zm,�∑

wm,�

)2 ∣∣∣ F

)
P(F ) + P

(
F c)

� E

(( ∑
wm,�zm,�∑

E(wm,�) − 32αn log2.5(n)

)2 ∣∣∣ F

)
P(F ) + P

(
F c)

� E

(( ∑
wm,�zm,�∑

E(wm,�) − 32αn log2.5(n)

)2)
+ P

(
F c)

� O

(
log2(n)

n2

)
.

The last inequality is due to the fact that

E

( ∑
(m,�)∈S14

wm,�zm,�

∣∣∣ Cδn
i, j

)2

= E

( ∑
(m,�)∈S14

∑
(m′,�′)∈S14

wm,�zm,�wm′,�′ zm′,�′
∣∣∣ Cδn

i, j

)

=
∑

(m,�)∈S14

∑
(m′,�′)∈C2δn

E
(

wm,�zm,�wm′,�′ zm′,�′
∣∣ Cδn

i, j

) = O
(
n2δ2

n

)
.

m,�
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Therefore,

E

((∑
(m,�)∈S23

wm,�zm,�∑
(m,�)∈S14

wm,�

)2)
� O

(
δ2

n

n2

)
. � (30)

Using the bounds derived in Lemmas 9 and 10, we can complete the proof of the main theorem:

sup
f ∈Hα(C)

R
(

f , f̂ N L) = 1

n2

∑
i

∑
j

E
(
xi, j − f̂ N

i, j

)2 � log2(n)(|S1| + |S4|)
n4

+ |S2| + |S3|
n2

� O

(
log(n)

n

)
. �

6. Discussion

We have provided the first asymptotic risk analysis of the nonlocal means (NLM) algorithm on smooth images with sharp
edges. In contrast to most other filtering approaches, NLM does not consider the spatial vicinity of the pixels as a feature
for setting the weights. Instead, it exploits more global features, which leads to improved performance.

In spite of this success, we have shown that the performance of NLM is within a logarithmic factor of the performance
of the wavelet thresholding and still significantly below the optimal achievable rate. This is due to the fact that the isotropic
nature of the NLM neighborhoods does not allow the algorithm to discriminate the pixels that are close to but below the
edge from the pixels that are close to but above the edge. This leads to a blurring effect that results in high bias along
the edge. Exploring the performance of NLM with anisotropic neighborhoods may address this issue and is left for future
research [19].
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