57 research outputs found

    Human Dendritic Cells Activated by TSLP and CD40L Induce Proallergic Cytotoxic T Cells

    Get PDF
    Human thymic stromal lymphopoietin (TSLP) is a novel epithelial cell–derived cytokine, which induces dendritic cell (DC)-mediated CD4+ T cell responses with a proallergic phenotype. Although the participation of CD8+ T cells in allergic inflammation is well documented, their functional properties as well as the pathways leading to their generation remain poorly understood. Here, we show that TSLP-activated CD11c+ DCs potently activate and expand naive CD8+ T cells, and induce their differentiation into interleukin (IL)-5 and IL-13–producing effectors exhibiting poor cytolytic activity. Additional CD40L triggering of TSLP-activated DCs induced CD8+ T cells with potent cytolytic activity, producing large amounts of interferon (IFN)-γ, while retaining their capacity to produce IL-5 and IL-13. These data further support the role of TSLP as initial trigger of allergic T cell responses and suggest that CD40L-expressing cells may act in combination with TSLP to amplify and sustain pro-allergic responses and cause tissue damage by promoting the generation of IFN-γ–producing cytotoxic effectors

    Pulmonary arterial remodeling induced by a Th2 immune response

    Get PDF
    Pulmonary arterial remodeling characterized by increased vascular smooth muscle density is a common lesion seen in pulmonary arterial hypertension (PAH), a deadly condition. Clinical correlation studies have suggested an immune pathogenesis of pulmonary arterial remodeling, but experimental proof has been lacking. We show that immunization and prolonged intermittent challenge via the airways with either of two different soluble antigens induced severe muscularization in small- to medium-sized pulmonary arteries. Depletion of CD4+ T cells, antigen-specific T helper type 2 (Th2) response, or the pathogenic Th2 cytokine interleukin 13 significantly ameliorated pulmonary arterial muscularization. The severity of pulmonary arterial muscularization was associated with increased numbers of epithelial cells and macrophages that expressed a smooth muscle cell mitogen, resistin-like molecule α, but surprisingly, there was no correlation with pulmonary hypertension. Our data are the first to provide experimental proof that the adaptive immune response to a soluble antigen is sufficient to cause severe pulmonary arterial muscularization, and support the clinical observations in pediatric patients and in companion animals that muscularization represents one of several injurious events to the pulmonary artery that may collectively contribute to PAH

    Biomarkers of Disease and Treatment in Murine and Cynomolgus Models of Chronic Asthma

    Get PDF
    Background Biomarkers facilitate early detection of disease and measurement of therapeutic efficacy, both at clinical and experimental levels. Recent advances in analytics and disease models allow comprehensive screening for biomarkers in complex diseases, such as asthma, that was previously not feasible. Objective Using murine and nonhuman primate (NHP) models of asthma, identify biomarkers associated with early and chronic stages of asthma and responses to steroid treatment. Methods The total protein content from thymic stromal lymphopoietin transgenic (TSLP Tg) mouse BAL fluid was ascertained by shotgun proteomics analysis. A subset of these potential markers was further analyzed in BAL fluid, BAL cell mRNA, and lung tissue mRNA during the stages of asthma and following corticosteroid treatment. Validation was conducted in murine and NHP models of allergic asthma. Results Over 40 proteins were increased in the BAL fluid of TSLP Tg mice that were also detected by qRT-PCR in lung tissue and BAL cells, as well as in OVA-sensitive mice and house dust mite-sensitive NHP. Previously undescribed as asthma biomarkers, KLK1, Reg3γ, ITLN2, and LTF were modulated in asthmatic mice, and Clca3, Chi3l4 (YM2), and Ear11 were the first lung biomarkers to increase during disease and the last biomarkers to decline in response to therapy. In contrast, GP-39, LCN2, sICAM-1, YM1, Epx, Mmp12, and Klk1 were good indicators of early therapeutic intervention. In NHP, AMCase, sICAM-1, CLCA1, and GP-39 were reduced upon treatment with corticosteroids. Conclusions and clinical relevance These results significantly advance our understanding of the biomarkers present in various tissue compartments in animal models of asthma, including those induced early during asthma and modulated with therapeutic intervention, and show that BAL cells (or their surrogate, induced sputum cells) are a viable choice for biomarker examination

    IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2–dependent mechanisms with implications for psoriasis pathogenesis

    Get PDF
    Aberrant cytokine expression has been proposed as an underlying cause of psoriasis, although it is unclear which cytokines play critical roles. Interleukin (IL)-23 is expressed in human psoriasis and may be a master regulator cytokine. Direct intradermal administration of IL-23 in mouse skin, but not IL-12, initiates a tumor necrosis factor–dependent, but IL-17A–independent, cascade of events resulting in erythema, mixed dermal infiltrate, and epidermal hyperplasia associated with parakeratosis. IL-23 induced IL-19 and IL-24 expression in mouse skin, and both genes were also elevated in human psoriasis. IL-23–dependent epidermal hyperplasia was observed in IL-19−/− and IL-24−/− mice, but was inhibited in IL-20R2−/− mice. These data implicate IL-23 in the pathogenesis of psoriasis and support IL-20R2 as a novel therapeutic target

    Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation

    Get PDF
    The C-type lectin-like receptor CD161, which has recently been described to promote T cell expansion, is expressed on a discrete subset of human CD4 T cells. The function of such cells, however, has remained elusive. We now demonstrate that CD161+ CD4 T cells comprise a circulating and gut-resident T helper 17 (Th17) cell population. During Crohn's disease (CD), these CD161+ cells display an activated Th17 phenotype, as indicated by increased expression of interleukin (IL)-17, IL-22, and IL-23 receptor. CD161+ CD4 T cells from CD patients readily produce IL-17 and interferon γ upon stimulation with IL-23, whereas, in healthy subjects, priming by additional inflammatory stimuli such as IL-1β was required to enable IL-23–induced cytokine release. Circulating CD161+ Th17 cells are imprinted for gut homing, as indicated by high levels of CC chemokine receptor 6 and integrin β7 expression. Supporting their colitogenic phenotype, CD161+ Th17 cells were found in increased numbers in the inflammatory infiltrate of CD lesions and induced expression of inflammatory mediators by intestinal cells. Our data identify CD161+ CD4 T cells as a resting Th17 pool that can be activated by IL-23 and mediate destructive tissue inflammation
    corecore