313 research outputs found

    Development of ex vivo organ culture models to mimic human corneal scarring

    Get PDF
    PURPOSE: To develop ex vivo organ culture models of human corneal scarring suitable for pharmacological testing and the study of the molecular mechanisms leading to corneal haze after laser surgery or wounding. METHODS: Corneas from human donors were cultured ex vivo for 30 days, either at the air-liquid interface (AL) or immersed (IM) in the culture medium. Histological features and immunofluorescence for fibronectin, tenascin C, thrombospondin-1, and α-smooth muscle actin were graded from 0 to 3 for control corneas and for corneas wounded with an excimer laser. The effects of adding 10 ng/ml transforming growth factor-β1 (TGF-β1) to the culture medium and of prior complete removal of the epithelium and limbus, thus preventing reepithelialization, were also analyzed on wounded corneas. Collagen III expression was detected with real-time PCR. RESULTS: Wounding alone was sufficient to induce keratocyte activation and stromal disorganization, but it was only in the presence of added TGF-β1 that intense staining for fibronectin and tenascin C was found in the AL and IM models (as well as thrombospondin-1 in the AL model) and that α-smooth muscle actin became detectable. The scar-like appearance of the corneas was exacerbated when TGF-β1 was added and reepithelialization was prevented, resulting in the majority of corneas becoming opaque and marked upregulation of collagen III. CONCLUSIONS: THE MAIN FEATURES OF CORNEAL SCARRING WERE REPRODUCED IN THESE TWO COMPLEMENTARY MODELS: the AL model preserved differentiation of the epithelium and permits the topical application of active molecules, while the IM model ensures better perfusion by soluble compounds

    Phacoemulsification of the crystalline lens and implantation of an intraocular lens for the correction of moderate and high myopia: Four-year follow-up

    Get PDF
    Purpose: To assess the safety of lens extraction and intraocular lens (IOL) implantation in patients with high myopia treated for initial lens opacity and/or refractive indications. Setting: Instituto de Microcirugfa Ocular de Barcelona, Barcelona, Spain. Methods: This retrospective nonrandomized case series study comprised 44 eyes of 30 consecutive myopic patients who had surgery because of initial lens opacity and/or refractive indications during a 2-year period. In each case, phacoemulsification was performed using an ultrasonic technique and an IOL was implanted in the capsular bag. The patients were seen preoperatively to evaluate retinal pathology. They also had a complete ophthalmologic evaluation that included detailed indirect ophthalmoscopy. All patients were followed at regular intervals. The main outcome measures were preoperative and postoperative-spherical equivalent (SE), the incidence of posterior capsule opacification (PCO) and the need for capsulotomy, and the incidence of retinal complications. Results: In all eyes, the surgery was uneventful. The mean patient age at surgery was 42.83 years; the mean preoperative SE was -15.77 diopters (D) and the mean postoperative SE, -1.05 D. No eye required preoperative peripheral retinal photocoagulation. Twenty-five eyes (56.8%) had PCO and had a neodymium:YAG laser capsulotomy. One eye had a retinal tear 14 months after surgery and was treated with focal photocoagulation. The mean endothelial cell loss was 2.1% during the first postoperative year. Two eyes had an immediate postoperative intraocular pressure (IOP)rise, 1 with an inflammatory membrane and the other with corneal edema; both resolved with topical treatment. One eye with elevated IOP and a bad response to medical treatment had argon laser trabeculoplasty. No eye had a retinal detachment during the follow-up. Conclusion: With a thorough preoperative ophthalmologic evaluation and uneventful surgery, patients who have phacoemulsification and IOL implantation for the correction of myopia have a satisfactory chance of obtaining good visual results with few complications. ©2003 ASCRS and ESCRS

    Linkage analysis of high myopia susceptibility locus in 26 families

    Get PDF
    Purpose: We conducted a linkage analysis in high myopia families to replicate suggestive results from chromosome 7q36 using a model of autosomal dominant inheritance and genetic heterogeneity. We also performed a genome-wide scan to identify novel loci. Methods: Twenty-six families, with at least two high-myopic subjects (ie. refractive value in the less affected eye of -5 diopters) in each family, were included. Phenotypic examination included standard autorefractometry, ultrasonographic eye length measurement, and clinical confirmation of the non-syndromic character of the refractive disorder. Nine families were collected de novo including 136 available members of whom 34 were highly myopic subjects. Twenty new subjects were added in 5 of the 17 remaining families. A total of 233 subjects were submitted to a genome scan using ABI linkage mapping set LMSv2-MD-10, additional markers in all regions where preliminary LOD scores were greater than 1.5 were used. Multipoint parametric and non-parametric analyses were conducted with the software packages Genehunter 2.0 and Merlin 1.0.1. Two autosomal recessive, two autosomal dominant, and four autosomal additive models were used in the parametric linkage analyses. Results: No linkage was found using the subset of nine newly collected families. Study of the entire population of 26 families with a parametric model did not yield a significant LOD score (>3), even for the previously suggestive locus on 7q36. A non-parametric model demonstrated significant linkage to chromosome 7p15 in the entire population (Z-NPL=4.07, p=0.00002). The interval is 7.81 centiMorgans (cM) between markers D7S2458 and D7S2515. Conclusions: The significant interval reported here needs confirmation in other cohorts. Among possible susceptibility genes in the interval, certain candidates are likely to be involved in eye growth and development

    Efficacy of treatments for demodex blepharitis: A systematic review and meta-analysis

    Get PDF
    Purpose We conducted a systematic review and meta-analysis to evaluate the efficacy of different treatment for Demodex blepharitis. Parameters studied were mites count, improvement of symptoms and mites’ eradication, stratified on type of treatments and mode of delivery of treatments (local or systemic). Method The PubMed, Cochrane Library, Embase, ClinicalTrials.gov, Google scholar and Science Direct databases were searched for studies reporting an efficacy of treatments for Demodex blepharitis. Results We included 19 studies (14 observational and 5 randomized clinical trials), for a total of 934 patients, 1741 eyes, and 13 different treatments. For mites count, eradication rate, and symptoms improvement, meta-analysis included fifteen, fourteen and thirteen studies, respectively. The overall effect sizes for efficiency of all treatments, globally, were 1.68 (95CI 1.25 to 2.12), 0.45 (0.26–0.64), and 0.76 (0.59–0.90), respectively. Except usual lid hygiene for mites count, Children's Hospital of Eastern Ontario ointment (CHEO) for both eradication rate and symptoms, and CHEO, 2% metronidazole ointment, and systemic metronidazole for eradication rate, all treatments were efficient. Stratified meta-analysis did not show significant differences between local and systemic treatments (1.22, 0.83 to 1.60 vs 2.24, 1.30 to 3.18 for mites count; 0.37, 0.21 to 0.54 vs 0.56, 0.06 to 0.99 for eradication rate; and 0.77, 0.58 to 0.92 vs 0.67, 0.25 to 0.98 for symptoms improvement). Conclusion We reported the efficiency of the different treatments of Demodex blepharitis. Because of less systemic side effects, local treatments seem promising molecules in the treatment of Demodex blepharitis

    G1 phase arrest by the phosphatidylinositol 3-kinase inhibitor LY 294002 is correlated to up-regulation of p27Kip1 and inhibition of G1 CDKs in choroidal melanoma cells

    Get PDF
    AbstractWe have investigated the effect of the flavonoid derivative LY 294002, a potent and selective phosphatidylinositol 3-kinase inhibitor, on cell cycle progression in human choroidal melanoma cells. We demonstrate that LY 294002 induces a specific G1 block in asynchronously growing cells leading to an almost complete inhibition of cell proliferation after three days of treatment. When melanoma cells are released from a nocodazole-induced G2/M block, LY 294002 is shown to delay and greatly restrain the G1/S transition. The inhibitor is able to exert its action as long as it is added during the G1 progression and before the cells enter in S phase. We report that the LY 294002-induced G1 arrest is closely correlated to inhibition of CDK4 and CDK2 activities leading to the impairment of pRb phosphorylation which normally occurs during G1 progression. While the inhibition of CDK4 may be attributed at least in part to the decline in CDK4 protein level, CDK2 activity reduction is rather due to the up-regulation of the CDK inhibitor p27Kip1 and to its increased association to CDK2

    Quality of DNA Extracted from Mouthwashes

    Get PDF
    Background A cost effective, safe and efficient method of obtaining DNA samples is essential in large scale genetic analyses. Buccal cells are an attractive source of DNA, as their collection is non-invasive and can be carried out by mail. However, little attention has been given to the quality of DNA extracted from mouthwashes. Methodology Mouthwash-derived DNA was extracted from 500 subjects participating in a genetic study of high myopia. DNA quality was investigated using two standard techniques: agarose gel electrophoresis and quantitative polymerase chain reaction (qPCR). Principal Findings Whereas the majority of mouthwash-derived DNA samples showed a single band of high molecular weight DNA by gel electrophoresis, 8.9% (95% CI: 7.1–10.7%) of samples contained only a smear of low-to-medium molecular weight, degraded DNA. The odds of DNA degradation in a subject's second mouthwash sample, given degradation of the first, was significantly greater than one (OR = 3.13; 95% CI: 1.22–7.39; Fisher's test P = 0.009), suggesting that DNA degradation was at least partially a subject-specific phenomenon. Approximately 12.4% (95% CI: 10.4–14.4%) of mouthwash-derived DNA failed to PCR amplify efficiently (using an ~200 bp microsatellite marker). However, we found there was no significant difference in amplification success rate between DNA samples judged to be degraded or non-degraded by gel electrophoresis (Fisher's test P = 0.5). Conclusions This study demonstrated that DNA degradation affects a significant minority of saline mouthwashes, and that the phenomenon is partially subject-specific. Whilst the level of degradation did not significantly prevent successful amplification of short PCR fragments, previous studies suggest that such DNA degradation would compromise more demanding applications

    The xenobiotic-metabolizing enzymes arylamine N-acetyltransferases in human lens epithelial cells: inactivation by cellular oxidants and UVB-induced oxidative stress

    Get PDF
    The abbreviations used are: NAT, arylamine N-acetyltransferase; XME, xenobiotic-metabolizing enzymes; SIN1, 3-morpholinosydnonimine N-ethylcarbamide MOL 9738 3 ABSTRACT The human arylamine N-acetyltransferases NAT1 and NAT2 are important xenobioticmetabolizing enzymes involved in the detoxification and metabolic activation of numerous drugs and chemicals. NAT activity depends on genetic polymorphisms and on environmental factors. It has been shown that low NAT-acetylation activity could increase the risk of age-dependent cataract suggesting that NAT detoxification function may be important for lens cells homeostasis. We report here that the NAT acetylation pathway may occur in human lens epithelial (HLE) cells. Functional NAT1 enzyme was readily detected in HLE cells by RT-PCR, western-blotting and enzyme activity assays. NAT2 mRNA and enzymic activity was also detected. We investigated whether oxidants, known to be produced in HLE cells during oxidative stresses and involved in age-dependent cataract formation, decreased endogenous NAT1 and NAT2 activity. The exposure of HLE cells to peroxynitrite led to the dose-dependent irreversible inactivation of both NAT isoforms. Exposing HLE cells to continuously generated H 2 O 2 gave a dose-dependent inactivation of NAT1 and NAT2, reversible on addition of high concentrations of reducing agents. UVB irradiation also induced the reversible dose-dependent inactivation of endogenous NAT1 and NAT2, reversible on addition of reducing agents. Thus, our data suggest that functional NAT1 and NAT2 are present in HLE cells and may be impaired by oxidants produced during oxidative and photo-oxidative stresses. Oxidative-dependent inhibition of NATs in these cells may increase exposure of lens to the harmful effects of toxic chemicals which could contribute to cataractogenesis over time

    Pediatric cataract, myopic astigmatism, familial exudative vitreoretinopathy and primary open-angle glaucoma co-segregating in a family

    Get PDF
    Purpose: To describe an Australian pedigree of European descent with a variable autosomal dominant phenotype of: pediatric cortical cataract (CC), asymmetric myopia with astigmatism, familial exudative vitreoretinopathy (FEVR), and primary open-angle glaucoma (POAG). Methods: Probands with CC, FEVR, and POAG were enrolled in three independent genetic eye studies in Tasmania. Genealogy confirmed these individuals were closely related and subsequent examination revealed 11 other family members with some or all of the associated disorders. Results: Twelve individuals had CC thought to be of childhood onset, with one child demonstrating progressive lenticular opacification. One individual had severe retinal detachment while five others had dragged retinal vessels. Seven individuals had POAG. Seven individuals had myopia in at least one eye ≤-3 Diopters. DNA testing excluded mutations in myocilin, trabecular meshwork inducible glucocorticoid response (MYOC) and tetraspanin 12 (TSPAN12). Haplotype analysis excluded frizzled family receptor 4 (FZD4) and low density lipoprotein receptor-related protein 5 (LRP5), but only partly excluded EVR3. Multipoint linkage analysis revealed multiple chromosomal single-nucleotide polymorphisms (SNPs) of interest, but no statistically significant focal localization. Conclusions: This unusual clustering of ophthalmic diseases suggests a possible single genetic cause for an apparently new cataract syndrome. This family’s clinical ocular features may reflect the interplay between retinal disease with lenticular changes and axial length in the development of myopia and glaucoma

    The xenobiotic-metabolizing enzymes arylamine N-acetyltransferases in human lens epithelial cells: inactivation by cellular oxidants and UVB-induced oxidative stress

    Get PDF
    ABSTRACT The human arylamine N-acetyltransferases NAT1 and NAT2 are important xenobiotic-metabolizing enzymes involved in the detoxification and metabolic activation of numerous drugs and chemicals. NAT activity depends on genetic polymorphisms and on environmental factors. It has been shown that low NAT-acetylation activity could increase the risk of age-dependent cataract, suggesting that NAT detoxification function may be important for lens cells homeostasis. We report here that the NAT acetylation pathway may occur in human lens epithelial (HLE) cells. Functional NAT1 enzyme was readily detected in HLE cells by reverse transcription-polymerase chain reaction, Western blotting, and enzyme activity assays. NAT2 mRNA and enzymic activity were also detected. We investigated whether oxidants, known to be produced in HLE cells during oxidative stresses and involved in age-dependent cataract formation, decreased endogenous NAT1 and NAT2 activity. The exposure of HLE cells to peroxynitrite led to the dose-dependent irreversible inactivation of both NAT isoforms. Exposing HLE cells to continuously generated H 2 O 2 gave a dose-dependent inactivation of NAT1 and NAT2, reversible on addition of high concentrations of reducing agents. UVB irradiation also induced the reversible dose-dependent inactivation of endogenous NAT1 and NAT2, reversible on addition of reducing agents. Thus, our data suggest that functional NAT1 and NAT2 are present in HLE cells and may be impaired by oxidants produced during oxidative and photooxidative stresses. Oxidativedependent inhibition of NATs in these cells may increase exposure of lens to the harmful effects of toxic chemicals that could contribute to cataractogenesis over time
    corecore