35 research outputs found

    Adsorption and Desorption of Bile Salts at Air–Water and Oil–Water Interfaces

    Get PDF
    Bile Salts (BS) adsorb onto emulsified oil droplets to promote lipolysis and then desorb, solubilizing lipolytic products, a process which plays a crucial role in lipid digestion. Hence, investigating the mechanism of adsorption and desorption of BS onto the oil–water interface is of major importance to understand and control BS functionality. This can have implications in the rational design of products with tailored digestibility. This study shows the adsorption and desorption curves of BS at air–water and oil–water interfaces obtained by pendant drop tensiometry. Three BS have been chosen with different conjugation and hydroxyl groups: Sodium Taurocholate (NaTC), Glycodeoxycholate (NaGDC) and Sodium Glycochenodeoxycholate (NaGCDC). Experimental results show important differences between the type of BS and the nature of the interface (air/oil–water). At the air–water interface, Glycine conjugates (NaGDC and NaGCDC) are more surface active than Taurine (NaTC), and they also display lower surface tension of saturated films. The position of hydroxyl groups in Glycine conjugates, possibly favors a more vertical orientation of BS at the surface and an improved lateral packing. These differences diminish at the oil–water interface owing to hydrophobic interactions of BS with the oil, preventing intermolecular associations. Desorption studies reveal the presence of irreversibly adsorbed layers at the oil–water interface in all cases, while at the air–water interface, the reversibility of adsorption depends strongly on the type of BS. Finally, dilatational rheology shows that the dilatational response of BS is again influenced by hydrophobic interactions of BS with the oil; thus, adsorbed films of different BS at the oil–water interface are very similar, while larger differences arise between BS adsorbed at the air–water interface. Results presented here highlight new features of the characteristics of adsorption layers of BS on the oil–water interface, which are more relevant to lipid digestion than characteristics of BS adsorbed at air–water interfaces.MCIN/AEI/10.13039/501100011033Project PID2020-116615RAI00Biocolloid and Fluid Physics Group (ref. PAIFQM115) of the University of Granada (Spain)MDPI and University of Granada

    Autotitrator based on an Arduino Open Source Pump

    Get PDF
    Acid–base titration is a quantitative analysis that enables knowing the quantity of acidic or basic groups present in a solution sample. It consists in the addition of base or acid to the solution sample while monitoring the pH to reach a neutral pH. The titration can be automated and here we present a low cost Arduino based Open Source Pump (OSPump) modified to act as an automated titrator with an obsolete but reliable Metrohm 713 pH meter. Our device is 50 times less expensive than second hand units from the pH meter manufacturer and inherently open to customization. We present two validation cases of study, including the lipolysis of a vegetable olive oil in water emulsion, characterized by the OSPump Titrator.Project PID2020-116615RA-I00 funded by MCIN/AEI /10.13039/501100011033EMERGIA grant with reference EMC21_00008 funded by Consejería de Universidad, Investigación e Innovación de la Junta de AndalucíaFEDER ‘‘ERDF (European Regional Development Fund) A way of making Europ

    Condensation of Model Lipid Films by Cholesterol: Specific Ion Effects

    Get PDF
    The condensing effect and the ability of cholesterol (CHOL) to induce ordering in lipid films is a question of relevance in biological membranes such as the milk fat globule membrane (MFGM) in which the amount of CHOL influences the phase separation and mechanical resistance to rupture of coexisting phases relevant to emulsified food systems. Here, we study the effect of different salts (NaCl, CaCl2, MgCl2, LaCl3) on monolayers made of a model mixture of lipids (DPPC:DPPS 4:1) and CHOL. To this end, we apply Langmuir Film Balance to report a combined analysis of surface pressure-area (pi-A) and surface potential-area (DV–A) isotherms along with Micro-Brewster Angle Microscopy (Micro-BAM) images of the monolayers in the presence of the different electrolytes. We show that the condensation of lipid by CHOL depends strongly on the nature of the ions by altering the shape and features of the pi-A isotherms. DV–A isotherms provide further detail on the ion specific interactions with CHOL. Our results show that the condensation of lipids in the presence of CHOL depends on the combined action of ions and CHOL, which can alter the physical state of the monolayer.This research was funded by “Ministerio de Economía y Competitividad (MINECO), Plan Nacional de Investigación, Desarrollo e Innovación Tecnológica (I + D + i)”: Grant RYC-2012-10556, Projects MAT2015-63644-C2-1-R, RTI2018-101309-B-C21 and FIS2016-80087-C2-1-P, and European Regional Development Fund (ERDF). “Universidad de Granada” CEI-BIOTIC-BS14.2015. This study was also partially supported by “Consejería de Conocimiento, Investigación y Universidad, Junta de Andalucía”, ref. SOMM17/6105/UGR and SOMM17/6109/UGR

    Interaction of surfactant and protein at the o/w interface and its effect on colloidal and biological properties of polymeric nanocarriers

    Full text link
    The use of polymer-based surfactants in the double-emulsion (water/oil/water, W/O/W) solvent-evaporation technique is becoming a widespread strategy for preparing biocompatible and biodegradable polymeric nanoparticles (NPs) loaded with biomolecules of interest in biomedicine, or biotechnology. This approach enhances the stability of the NPs, reduces their size and recognition by the mononuclear phagocytic system, and protects the encapsulated biomolecule against losing biological activity. Different protocols to add the surfactant during the synthesis lead to different NP colloidal properties and biological activity.Comment: 8 pages, 4 figures, 3 table

    Interaction of surfactant and protein at the O/W interface and its effect on colloidal and biological properties of polymeric nanocarriers.

    Get PDF
    Hypothesis: The use of polymer-based surfactants in the double-emulsion (water/oil/water, W/O/W) solventevaporation technique is becoming a widespread strategy for preparing biocompatible and biodegradable polymeric nanoparticles (NPs) loaded with biomolecules of interest in biomedicine, or biotechnology. This approach enhances the stability of the NPs, reduces their size and recognition by the mononuclear phagocytic system, and protects the encapsulated biomolecule against losing biological activity. Different protocols to add the surfactant during the synthesis lead to different NP colloidal properties and biological activity. Experiments: We develop an in vitro model to mimic the first step of the W/O/W NP synthesis method, which enables us to analyze the surfactant-biomolecule interaction at the O/W interface. We compare the interfacial properties when the surfactant is added from the aqueous or the organic phase, and the effect of pH of the biomolecule solution. We work with a widely used biocompatible surfactant (Pluronic F68), and lysozyme, reported as a protein model. Findings: The surfactant, when added from the water phase, displaces the protein from the interface, hence protecting the biomolecule. This could explain the improved colloidal stability of NPs, and the higher biological activity of the lysozyme released from nanoparticles found with the counterpart preparation.Financial support granted by the following research projects: MAT2013-43922-R – European FEDER support included–(MICINN, Spain), RYC-2012-10556, MAT2015- 63644-C2-1-R and PI12/2956

    Complexation of DNA with Thermoresponsive Charged Microgels: Role of Swelling State and Electrostatics

    Get PDF
    This research was funded by projects RTI2018-101309-B-C21 and PID2020-631-116615RA-I00, funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe" and by project PY20_00138, funded by Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades (PAIDI2020).Micro- and nanogels are being increasingly used to encapsulate bioactive compounds. Their soft structure allows large loading capacity while their stimuli responsiveness makes them extremely versatile. In this work, the complexation of DNA with thermoresponsive microgels is presented. To this end, PEGylated charged microgels based on poly-N-isopropylacrylamide have been synthesized, allowing one to explore the electrostatics of the complexation. Cationic microgels complexate spontaneously by electrostatic attraction to oppositely charged DNA as demonstrated by electrophoretic mobility of the complexes. Then, Langmuir monolayers reveal an increased interaction of DNA with swollen microgels (20 degrees C). Anionic microgels require the presence of multivalent cations (Ca2+) to promote the complexation, overcoming the electrostatic repulsion with negatively charged DNA. Then again, Langmuir monolayers evidence their complexation at the surface. However, the presence of Ca2+ seems to induce profound changes in the interaction and surface conformation of anionic microgels. These alterations are further explored by measuring adsorbed films with the pendant drop technique. Conformational changes induced by Ca2+ on the structure of the microgel can ultimately affect the complexation with DNA and should be considered in the design. The combination of microstructural and surface properties for microgels offers a new perspective into complexation of DNA with soft particles with biomedical applications.MCIN/AEI RTI2018-101309-B-C21 PID2020-631-116615RA-I00Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades PY20_0013

    Foamy oysters: vesicular microstructure production in the Gryphaeidae via emulsification

    Get PDF
    The vesicular microstructure is a very distinctive arrangement of calcite, consisting of hollow cavities (vesicles) of diverse sizes and shapes, usually elongated in the direction of shell thickening. It is uniquely found among living bivalves in a single oyster family, Gryphaeidae. The vesicles are distributed in lenses interleaved with compact foliated layers. We have studied the morphology and distribution of vesicles within the lenses using optical and electron microscopy, and microcomputed tomography. At a small scale, vesicles do not follow a classical von Neumann-Mullins route typical of ideal foams. At a larger scale, the initiation and evolution of a vesicular layer statistically proceed like a foam, with vesicles becoming more numerous, larger, and more even in size. In summary, the vesicular material follows a foam-like coarsening to reduce the number of energetically costly interfaces. However, a steady state is never reached because the animal permanently introduces energy in the system by creating new vesicles. The fabrication of the vesicular material is mediated by the production of an emulsion between the extrapallial fluid and the precursor PILP of the calcitic walls within the thin extrapallial space. For this mechanism to proceed, the mantle cells must perform highly sophisticated behaviours of contact recognition and secretion. Accordingly, the vesicular material is under mixed physical-biological control

    Specific Ion Effects in Cholesterol Monolayers

    Get PDF
    The interaction of ions with interfaces and, in particular, the high specificity of these interactions to the particular ions considered, are central questions in the field of surface forces. Here we study the effect of different salts (NaI, NaCl, CaCl2 and MgCl2) on monolayers made of cholesterol molecules, both experimentally (surface area vs. lateral pressure isotherms measured by a Langmuir Film Balance) and theoretically (molecular dynamics (MD) all-atomic simulations). We found that surface isotherms depend, both quantitatively and qualitatively, on the nature of the ions by altering the shape and features of the isotherm. In line with the experiments, MD simulations show clear evidences of specific ionic effects and also provide molecular level details on ion specific interactions with cholesterol. More importantly, MD simulations show that the interaction of a particular ion with the surface depends strongly on its counterion, a feature ignored so far in most theories of specific ionic effects in surface forces

    pH influences the interfacial properties of blue whiting (M. poutassou) and whey protein hydrolysates determining the physical stability of fish oil-in-water emulsions

    Get PDF
    This work was funded by the project CTQ2017-87076-R from the Spanish Ministry of Science and Innovation. Julia Maldonado-Valderrama and Teresa del Castillo-Santaella acknowledge financialsupport from project RTI2018-101309-B-C21. The authors are also very grateful to F. Javier Espejo-Carpio and Marta Padial-Dominguez for providing the whey and blue whiting protein hydrolysates. Funding for open access charge: Universidad de Granada/CBUA.This work investigates the influence of the interfacial properties of whey protein (WPH) and blue whiting protein (BPH) hydrolysates on the physical stability of fish oil-in-water emulsions stabilized with these hydrolysates at pH 2 or 8. Measurements of interfacial tension and dilatational rheology confirmed that pH is a key factor affecting these interfacial properties of WPH and BPH. WPH, when tested at 1 and 10 mg/mL, showed a higher interfacial activity at pH 8 when compared to pH 2 or to BPH at pH 8 or 2, despite having a lower protein content. Moreover, when tested at 0.1 and 1 mg/mL, the dilatational modulus of WPH was significantly higher at pH 8 than at pH 2. These findings correlate with the formation of smaller oil droplets and a more resistant interfacial peptide layer for WPH at pH 8, hence explaining the improved physical stability of the 5% fish oil-in water emulsion stabilized with WPH at pH 8. BPH did not show significant differences in interfacial activity with pH but exhibited significantly higher dilatational elasticity and viscosity at pH 2 compared to pH 8 (when measured at 0.1 mg/mL and 0.01 or 0.1 Hz). This correlates with the formation of stable 5% fish oil-in-water emulsions with BPH at pH 2 but not at pH 8.Spanish Government CTQ2017-87076-

    Effect of Hyaluronic Acid and Pluronic-F68 on the Surface Properties of Foam as a Delivery System for Polidocanol in Sclerotherapy

    Get PDF
    The use of foams to deliver bioactive agents and drugs is increasing in pharmaceutics. One example is the use of foam as a delivery system for polidocanol (POL) in sclerotherapy, with the addition of bioactive compounds to improve the delivery system being a current subject of study. This work shows the influence of two bioactive additives on the structure and stability of POL foam: hyaluronic acid (HA) and Pluronic-F68 (F68). HA is a natural non-surface-active biopolymer present in the extracellular matrix while F68 is a surface-active poloxamer that is biocompatible with plasma-derived fluids. Both additives increase the bulk viscosity of the sample, improving foam stability. However, HA doubled and F68 quadruplicated the foam half lifetime of POL. HA reduced the size and polydispersity of the bubble size distribution and increased the surface elasticity with respect to POL. Both facts have a positive impact in terms of foam stability. F68 also altered bubble structure and increased surface elasticity, again contributing to the enhancement of foam stability. The surface characterization of these systems is important, as in foam sclerotherapy it is crucial to assure the presence of POL at the surface of the bubbles in order to deliver the sclerosant agent in the target vein.Junta de Andalucia NANOFOAM-PI12.2956Instituto de Salud Carlos III Spanish Government MAT2017-82182-R RTI2018-101309-B-C21Consejeria de Economia, Conocimiento, Empresas y UniversidadEuropean Union (EU) SOMM17/6109/UG
    corecore