18 research outputs found

    Green chemistry and environmental processes

    Get PDF
    Funding Information: Acknowledgments: Portuguese FCT—Fundação para a Ciência e a Tecnologia, I.P., under the Scientific Employment Stimulus—Institutional Call (CEECINST/00102/2018) and Associate Laboratory for Green Chemistry—LAQV, financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020) and the Spanish Project ref. RTI 2018-099224-B100 funded by ERDF/Ministry of Science, Innovation and Universities. S.M.-T. also acknowledges the Ramón y Cajal contract (RYC-2019-026634-I/AEI/10.13039/501100011033) from MINECO.publishersversionpublishe

    Cobalt oxide-Carbon nanocatalysts with highly enhanced catalytic performance for the green synthesis of nitrogen heterocycles through Friedländer condensation.

    Get PDF
    A novel series of eco-sustainable catalysts developed by supporting CoO nanoparticles on different carbon supports, highly efficient in the synthesis of quinolines and naphthyridines, through the Friedländer condensation, are reported for the first time. Textural properties, dispersion and location of the Co-phase are influenced by the nature of the carbon support, Co-precursor salt and metal loading, having a significant impact on the catalytic performance. Thus, the presence of the mesopores and macropores in carbon aerogels together with the homogeneous distribution of the active phase favours the formation of product 3a as a function of the metal loading. However, an increase in the metal content when using CNTs indicates the formation of CoO aggregates and an optimal concentration of 3 wt% CoO was observed, providing the highest conversion values. The carbon-based catalysts herein reported can be considered to be a sustainable alternative having advantages such as easy preparation, superior stability and notably enhanced catalytic performance, operating at lower temperature and under solvent-free conditions.pre-print815 K

    Heterogeneous gold nanoparticle-based catalysts for the synthesis of click-derived triazoles via the azide-alkyne cycloaddition reaction

    Get PDF
    PD/BD 135555/2018 IST-ID/263/2019A supported gold nanoparticle-catalyzed strategy has been utilized to promote a click chemistry reaction for the synthesis of 1,2,3-triazoles via the azide-alkyne cycloaddition (AAC) reaction. While the advent of effective non-copper catalysts (i.e., Ru, Ag, Ir) has demonstrated the catalysis of the AAC reaction, additional robust catalytic systems complementary to the copper catalyzed AAC remain in high demand. Herein, Au nanoparticles supported on Al2 O3, Fe2 O3, TiO2 and ZnO, along with gold reference catalysts (gold on carbon and gold on titania supplied by the World Gold Council) were used as catalysts for the AAC reaction. The supported Au nanoparticles with metal loadings of 0.7–1.6% (w/w relative to support) were able to selectively obtain 1,4-disubstituted-1,2,3-triazoles in moderate yields up to 79% after 15 min, under microwave irradiation at 150◦ C using a 0.5–1.0 mol% catalyst loading through a one-pot three-component (terminal alkyne, organohalide and sodium azide) procedure according to the “click” rules. Among the supported Au catalysts, Au/TiO2 gave the best results.publishersversionpublishe

    Enhanced catalytic performance of ZnO/carbon materials in the green synthesis of poly-substituted quinolines.

    No full text
    A highly efficient methodology for the selective synthesis of nitrogen heterocycles via Friedländer reaction using carbon materials supported ZnO catalysts under the green chemistry domain is presented. The influence of the physicochemical properties of different carbon supports, in particular an activated carbon (AC), multi-walled carbon nanotubes (MWCNT) and a carbon aerogel (CA), on the catalytic performance is discussed. The developed catalysts are easily prepared by simple incipient wetness impregnation and a subsequent thermal treatment. These ZnO/carbon catalysts showed a great performance in the Friedländer condensation of 2-amino-5-chlorobenzaldehyde and carbonylic compounds with enolizable hydrogens, under solvent-free and mild conditions, affording in all cases selectively a total conversion to the corresponding quinoline. Both the Zn loading in combination with the developed microporosity of the selected carbon supports seem to be the key factors determining the catalytic performance. Yields obtained with ZnO/carbon composites catalysts are superior to those obtained by others widely used in fine chemistry such as, Zn-catalysts supported on mesoporous silica (SBA-15) and Zn-metal-organic-frameworks (MOF).pre-print1162 K

    Fitting Biochars and Activated Carbons from Residues of the Olive Oil Industry as Supports of Fe- Catalysts for the Heterogeneous Fenton-Like Treatment of Simulated Olive Mill Wastewater

    No full text
    A series of biochars and activated carbons (ACs) was prepared combining carbonization and physical or chemical activation of cheap and abundant residues of the olive oil industry. These materials were used as Fe-support to develop low-cost catalysts for the heterogeneous Fenton-like oxidation of simulated olive mill wastewater (OMW), the highly pollutant effluent generated by this agroindustry. Commercial ACs were also used as reference. All catalysts prepared were extensively characterized and results related with their performances in the catalytic wet peroxide oxidation (CWPO). Results showed a linear relationship of the textural properties of the catalysts with the adsorptive and catalytic performance, as well as the preferential adsorption and degradation of some phenolic compounds (caffeic and gallic acids) by specific interactions with the catalysts’ surface. Despite the best performance of catalysts developed using commercial supports, those prepared from agro-industrial residues present some advantages, including a smaller catalyst deactivation by iron leaching. CWPO results show that catalysts from physically activated olive stones are the most promising materials, reaching total organic carbon and toxicity reductions of 35% and 60%, respectively, as well an efficient use of H2O2, comparable with those obtained using commercial supports. This approach showed that the optimized treatment of this type of residues will allow their integration in the circular economic process of the olive oil production

    Orange II Degradation by Wet Peroxide Oxidation Using Au Nanosized Catalysts: Effect of the Support

    No full text
    The degradation of Orange II was evaluated by wet peroxide oxidation using gold nanoparticles supported on Fe2O3, TiO2, ZnO, and Al2O3 as catalysts in a slurry batch reactor. Materials were prepared by the same deposition-precipitation method, which yielded well-dispersed nanosized gold particles (2.2-5.5 nm). For comparison, a commercial catalyst (Au/Fe2O3 supplied by the World Gold Council) was used as reference. It was demonstrated that the efficiency of wet peroxide oxidation for the Orange II removal and organics mineralization depends on the type of oxide used and the loading and diameter of gold. The Au/Al2O3 material, with the highest BET surface area, showed the highest turnover frequency value and also higher total organic carbon and Orange II removals. The catalysts were reused for consecutive cycles, with no Au leaching being detected into the solution, demonstrating their high stability. This stability was confirmed by textural and chemical characterization of the fresh and used materials. (c) 2017 American Chemical Society

    Metal-free synthesis of quinolines catalyzed by carbon aerogels: Influence of the porous texture and surface chemistry

    No full text
    We report herein an experimental and theoretical study of the Friedländer reaction, from 2-amino-5-chlorobenzaldehyde and ethyl acetoacetate, catalyzed by free-metal nanocatalysts based on carbon aerogels, to afford quinoline 3a. The developed methodology implies the combined use of carbon aerogels with solvent-free technologies under MW irradiation yielding the corresponding quinoline with moderated yield (66%) in only 5 min of reaction time. Our results demonstrated that the reactivity of the samples upon MW irradiation is strongly dependent on the porosity and surface chemistry of the carbon aerogels, the most active catalytic species being the most acidic oxygenated functional groups, –COH groups originated by oxidant treatment, or even in situ by hydrolysis of –CO–O–CO–, over the carbon surface. The theoretical investigation of the reaction mechanism, by using computational methods, demonstrated that the synthesis of quinoline 3a in the absence or in the presence of carbon aerogels takes place by aldolization, subsequent heterocyclization and finally double dehydration. Relatively strong π-π stacking interactions between carbon support and reagents could be behind of the observed catalytic performance also extended for the oxygenated models. Furthermore, the concentration of –COH groups over the carbon surface is a key factor favoring each step of the reaction but acting as individual catalytic sites.This work has been supported by MICINN (CTM 2014-56668-R project). We are also grateful to the Centro de Supercomputación de Galicia (CESGA) for generous allocation of computing resources. MGO also thanks UNED for her PhD fellowship and VCC for her postdoctoral contractPeer Reviewe

    Cobalt-Doped Carbon Gels as Electro-Catalysts for the Reduction of CO2 to Hydrocarbons

    No full text
    Two original series of carbon gels doped with different cobalt loadings and well-developed mesoporosity, aerogels and xerogels, have been prepared, exhaustively characterized, and tested as cathodes for the electro-catalytic reduction of CO2 to hydrocarbons at atmospheric pressure. Commercial cobalt and graphite sheets have also been tested as cathodes for comparison. All of the doped carbon gels catalyzed the formation of hydrocarbons, at least from type C1 to C4. The catalytic activity depends mainly on the metal loading, nevertheless, the adsorption of a part of the products in the porous structure of the carbon gel cannot be ruled out. Apparent faradaic efficiencies calculated with these developed materials were better that those obtained with a commercial cobalt sheet as a cathode, especially considering the much lower amount of cobalt contained in the Co-doped carbon gels. The cobalt-carbon phases formed in these types of doped carbon gels improve the selectivity to C3-C4 hydrocarbons formation, obtaining even more C3 hydrocarbons than CH4 in some cases

    Application of Au/TiO2 catalysts in the low-temperature water-gas shift reaction

    No full text
    Au/TiO2 catalysts were synthesized by three different methods, with different gold loadings, and tested for the low temperature water-gas shift (WGS) reaction. Gold was loaded by a Double Impregnation Method (DIM), Deposition-Precipitation (DP) and Liquid Phase Reductive Deposition (LPRD). For each procedure, catalysts were synthesized with three different loadings of gold, up to ca. 2.5 wt.%, identified as 1, 2 or 3 for low, intermediate or high amounts of nanosized gold, respectively. The prepared materials were characterized by High-Resolution Transmission Electron Microscopy (HR-TEM), X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS), Temperature Programmed Reduction (TPR) and Absorption Atomic Spectroscopy (AAS). The performance of the catalysts was compared based on the CO conversions (XCO) and turnover frequencies (TOFs) obtained in the WGS reaction. The two best catalysts obtained were Au/TiO2-DP-3 and Au/TiO2-LPRD-3. Both showed XCO and TOF values higher than that of the commercial Au/TiO2-WGC (supplied by the World Gold Council). Although TOF was higher for Au/TiO2-LPRD-3 (at 250-300°C), this sample suffers deactivation. The Au/TiO2 DP-3 material was thus selected as the best synthesized catalyst, with a XCO 85% at 300°C (XCO of the WGC sample was 52% at 300°C). The Au/TiO2 DP-3 material has small gold nanoparticles before and after use, which can account for the improved catalytic activity, well known to be related with gold nanoparticle size. However, stability was found to be better for the WGC sample. Copyright (c) 2016 Hydrogen Energy Publications, LLC
    corecore