10,984 research outputs found
Evolved stars and the origin of abundance trends in planet hosts
Tentative evidence that the properties of evolved stars with planets may be
different from what we know for MS hosts has been recently reported. We aim to
test whether evolved stars with planets show any chemical peculiarity that
could be related to the planet formation process. We determine in a consistent
way the metallicity and individual abundances of a large sample of evolved
(subgiants and red giants) and MS stars with and without known planetary
companions. No differences in the vs. condensation temperature (Tc)
slopes are found between the samples of planet and non-planet hosts when all
elements are considered. However, if the analysis is restricted to only
refractory elements, differences in the Tc-slopes between stars with and
without known planets are found. This result is found to be dependent on the
stellar evolutionary stage, as it holds for MS and subgiant stars, while there
seem to be no difference between planet and non-planet hosts among the sample
of giants. A search for correlations between the Tc-slope and the stellar
properties reveals significant correlations with the stellar mass and the
stellar age. The data also suggest that differences in terms of mass and age
between MS planet and non-planet hosts may be present. Our results are well
explained by radial mixing in the Galaxy. The sample of giant contains stars
more massive and younger than their MS counterparts. This leads to a sample of
stars possibly less contaminated by stars not born in the solar neighbourhood,
leading to no chemical differences between planet and non planet hosts. The
sample of MS stars may contain more stars from the outer disc (specially the
non-planet host sample) which might led to the differences observed in the
chemical trends.Comment: Accepted for publication by Astronomy and Astrophysic
Hubble Space Telescope meteoroid-debris protection analysis
A system level failure could occur if the Hubble Space Telescope's (ST) capability to operate as a facility on-orbit is critically reduced or when a significant reduction in the quality of science data is registered. Failure could occur if a meteoroid/debris impact damages a component of a major support subsystem or if a meteoroid/debris penetration causes straylight contamination in the light shield, forward shell, aft shroud, or through the aperture door. The ST was analyzed to find the probability of no critical penetration. This probability value was found to be 92.25% for a two-year service life. A straylight leakage repair technique was recommended for the aft shroud, the region found most likely to be critically penetrated. Fozar tape and multilayer insulation blankets are suggested as posible repair materials
Chemical fingerprints of hot Jupiter planet formation
The current paradigm to explain the presence of Jupiters with small orbital
periods (P 10 days; hot Jupiters) that involves their formation beyond the
snow line following inward migration, has been challenged by recent works that
explored the possibility of in situ formation. We aim to test whether stars
harbouring hot Jupiters and stars with more distant gas-giant planets show any
chemical peculiarity that could be related to different formation processes.
Our results show that stars with hot Jupiters have higher metallicities than
stars with cool distant gas-giant planets in the metallicity range +0.00/+0.20
dex. The data also shows a tendency of stars with cool Jupiters to show larger
abundances of elements. No abundance differences between stars with
cool and hot Jupiters are found when considering iron peak, volatile elements
or the C/O, and Mg/Si ratios. The corresponding -values from the statistical
tests comparing the cumulative distributions of cool and hot planet hosts are
0.20, 0.01, 0.81, and 0.16 for metallicity, , iron-peak, and
volatile elements, respectively. We confirm previous works suggesting that more
distant planets show higher planetary masses as well as larger eccentricities.
We note differences in age and spectral type between the hot and cool planet
hosts samples that might affect the abundance comparison. The differences in
the distribution of planetary mass, period, eccentricity, and stellar host
metallicity suggest a different formation mechanism for hot and cool Jupiters.
The slightly larger abundances found in stars harbouring cool Jupiters
might compensate their lower metallicities allowing the formation of gas-giant
planets.Comment: Accepted by Astronomy & Astrophysic
Stability of switched linear differential systems
We study the stability of switched systems where the dynamic modes are
described by systems of higher-order linear differential equations not
necessarily sharing the same state space. Concatenability of trajectories at
the switching instants is specified by gluing conditions, i.e. algebraic
conditions on the trajectories and their derivatives at the switching instant.
We provide sufficient conditions for stability based on LMIs for systems with
general gluing conditions. We also analyse the role of positive-realness in
providing sufficient polynomial-algebraic conditions for stability of two-modes
switched systems with special gluing conditions
Connecting substellar and stellar formation. The role of the host star's metallicity
Most of our current understanding of the planet formation mechanism is based
on the planet metallicity correlation derived mostly from solar-type stars
harbouring gas-giant planets. To achieve a far more reaching grasp on the
substellar formation process we aim to analyse in terms of their metallicity a
diverse sample of stars (in terms of mass and spectral type) covering the whole
range of possible outcomes of the planet formation process (from planetesimals
to brown dwarfs and low-mass binaries). Our methodology is based on the use of
high-precision stellar parameters derived by our own group in previous works
from high-resolution spectra by using the iron ionisation and equilibrium
conditions. All values are derived in an homogeneous way, except for the M
dwarfs where a methodology based on the use of pseudo equivalent widths of
spectral features was used. Our results show that as the mass of the substellar
companion increases the metallicity of the host star tendency is to lower
values. The same trend is maintained when analysing stars with low-mass stellar
companions and a tendency towards a wide range of host star's metallicity is
found for systems with low mass planets. We also confirm that more massive
planets tend to orbit around more massive stars. The core-accretion formation
mechanism for planet formation achieves its maximum efficiency for planets with
masses in the range 0.2 and 2 M. Substellar objects with higher
masses have higher probabilities of being formed as stars. Low-mass planets and
planetesimals might be formed by core-accretion even around low-metallicity
stars.Comment: Accepted by A&
Supersonic through-flow fan engine and aircraft mission performance
A study was made to evaluate potential improvement to a commercial supersonic transport by powering it with supersonic through-flow fan turbofan engines. A Mach 3.2 mission was considered. The three supersonic fan engines considered were designed to operate at bypass ratios of 0.25, 0.5, and 0.75 at supersonic cruise. For comparison a turbine bypass turbojet was included in the study. The engines were evaluated on the basis of aircraft takeoff gross weight with a payload of 250 passengers for a fixed range of 5000 N.MI. The installed specific fuel consumption of the supersonic fan engines was 7 to 8 percent lower than that of the turbine bypass engine. The aircraft powered by the supersonic fan engines had takeoff gross weights 9 to 13 percent lower than aircraft powered by turbine bypass engines
The design and performance estimates for the propulsion module for the booster of a TSTO vehicle
A NASA study of the propulsion systems for possible low-risk replacements for the Space Shuttle is presented. Results of preliminary studies to define the USAF two-stage-to-orbit (TSTO) concept to deliver 10,000 pounds to low polar orbit are described. The booster engine module consists of an over/under turbine bypass engines/ramjet engine design for acceleration from takeoff to the staging point of Mach 6.5 and approximately 100,000 feet altitude. Propulsion system performance and weight are presented with preliminary mission study results of vehicle size
- …