22 research outputs found
Zn loading effects on the selectivity of PdZn catalysts for CO2 hydrogenation to methanol
PdZn/TiO2 catalysts have been investigated for the hydrogenation of CO2 to methanol. Varying the ratio of Pd and Zn using TiO2 as a support has a dramatic effect on catalytic performance. Chemical vapour impregnation was used to produce PdZn alloys on TiO2 and X-ray diffraction, X-ray photoelectron spectroscopy, and scanning transmission electron microscopy revealed changes in the structure at varying total PdZn molar ratios. Compared to monometallic Pd/TiO2, introducing a low loading of Zn drastically changes product selectivity. When Pd is alloyed with Zn above a total Zn/Pd = 1 molar ratio, methanol selectivity is improved. Therefore, for enhanced methanol productivity, it is crucial for the Zn loading to be higher than that required for the stoichiometric formation of the 1:1 β-PdZn alloy
Methanol synthesis from CO2 and H2 using supported Pd alloy catalysts.
A number of Pd based materials have been synthesised and evaluated as catalysts for the conversion of carbon dioxide and hydrogen to methanol, a useful platform chemical and hydrogen storage molecule. Monometallic Pd catalysts shows poor methanol selectivity, but this is improved through the formation of Pd alloys, with both PdZn and PdGa alloys showing greatly enhanced methanol productivity compared with monometallic Pd/Al2O3 and Pd/TiO2 catalysts. Catalyst characterisation shows that the 1:1 β-PdZn alloy is present in all Zn containing post-reaction samples, including PdZn/Ga2O3, while the Pd2Ga alloy formed for the Pd/Ga2O3 sample. The heats of mixing were calculated for a variety of alloy compositions with high heats of mixing calculated for both PdZn and Pd2Ga alloys, with values of ca. -0.6 eV/atom and ca. -0.8 eV/atom, respectively. However, ZnO is more readily reduced than Ga2O3, providing a possible explanation for the preferential formation of the PdZn alloy, rather than PdGa. when in the presence of Ga2O3
Fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin with gemtuzumab ozogamicin improves event-free survival in younger patients with newly diagnosed aml and overall survival in patients with npm1 and flt3 mutations
Purpose
To determine the optimal induction chemotherapy regimen for younger adults with newly diagnosed AML without known adverse risk cytogenetics.
Patients and Methods
One thousand thirty-three patients were randomly assigned to intensified (fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin [FLAG-Ida]) or standard (daunorubicin and Ara-C [DA]) induction chemotherapy, with one or two doses of gemtuzumab ozogamicin (GO). The primary end point was overall survival (OS).
Results
There was no difference in remission rate after two courses between FLAG-Ida + GO and DA + GO (complete remission [CR] + CR with incomplete hematologic recovery 93% v 91%) or in day 60 mortality (4.3% v 4.6%). There was no difference in OS (66% v 63%; P = .41); however, the risk of relapse was lower with FLAG-Ida + GO (24% v 41%; P < .001) and 3-year event-free survival was higher (57% v 45%; P < .001). In patients with an NPM1 mutation (30%), 3-year OS was significantly higher with FLAG-Ida + GO (82% v 64%; P = .005). NPM1 measurable residual disease (MRD) clearance was also greater, with 88% versus 77% becoming MRD-negative in peripheral blood after cycle 2 (P = .02). Three-year OS was also higher in patients with a FLT3 mutation (64% v 54%; P = .047). Fewer transplants were performed in patients receiving FLAG-Ida + GO (238 v 278; P = .02). There was no difference in outcome according to the number of GO doses, although NPM1 MRD clearance was higher with two doses in the DA arm. Patients with core binding factor AML treated with DA and one dose of GO had a 3-year OS of 96% with no survival benefit from FLAG-Ida + GO.
Conclusion
Overall, FLAG-Ida + GO significantly reduced relapse without improving OS. However, exploratory analyses show that patients with NPM1 and FLT3 mutations had substantial improvements in OS. By contrast, in patients with core binding factor AML, outcomes were excellent with DA + GO with no FLAG-Ida benefit
An analysis of sugarcane harvesting options in the Tully mill area using dynamic and linear programming
Sugarcane in a perennial crop harvested annually over a six-month season from June to December. Each crop cycle consists of a plant crop followed by several ratoon crops.
Time of harvest influences both commercial cane sugar (CCS) content in the current season and yield in the following season. Legislative requirements force growers to harvest some of their cane during sub-optimal periods and growers have to decide the order in which to harvest blocks when both yield and sugar content that determine block returns are uncertain.
Industry data about yield and (CCS) stored in a MS Access database were used in a dynamic programming analysis of potential harvest sequences. Optimal harvest patterns were identified given industry constraints on cane harvested in several equal time periods during the season
Numerical investigation of the effect of ambient turbulence on pressure swirl spray characteristics
A numerical investigation is performed into the effects of the root mean square (RMS) turbulence velocity on the spray characteristics of liquid fuel injected into a constant volume vessel and comparison drawn with experimental data obtained for the case of iso-octane fuel injected into nitrogen showing good agreement between the two. A detailed parametric study is undertaken, enabling the effect of ambient turbulence on key spray characteristics to be determined. The numerical solutions obtained reveal how an increased level of turbulence in the gas into which fuel is injected leads to reductions in the axial fuel penetration and the Sauter mean droplet diameter, together with increases in radial vapour penetration and the number of fuel droplets formed