8 research outputs found

    Structural Determination of Functional Units of the Nucleotide Binding Domain (NBD94) of the Reticulocyte Binding Protein Py235 of Plasmodium yoelii

    Get PDF
    Invasion of the red blood cells (RBC) by the merozoite of malaria parasites involves a large number of receptor ligand interactions. The reticulocyte binding protein homologue family (RH) plays an important role in erythrocyte recognition as well as virulence. Recently, it has been shown that members of RH in addition to receptor binding may also have a role as ATP/ADP sensor. A 94 kDa region named Nucleotide-Binding Domain 94 (NBD94) of Plasmodium yoelii YM, representative of the putative nucleotide binding region of RH, has been demonstrated to bind ATP and ADP selectively. Binding of ATP or ADP induced nucleotide-dependent structural changes in the C-terminal hinge-region of NBD94, and directly impacted on the RBC binding ability of RH.In order to find the smallest structural unit, able to bind nucleotides, and its coupling module, the hinge region, three truncated domains of NBD94 have been generated, termed NBD94(444-547), NBD94(566-663) and NBD94(674-793), respectively. Using fluorescence correlation spectroscopy NBD94(444-547) has been identified to form the smallest nucleotide binding segment, sensitive for ATP and ADP, which became inhibited by 4-Chloro-7-nitrobenzofurazan. The shape of NBD94(444-547) in solution was calculated from small-angle X-ray scattering data, revealing an elongated molecule, comprised of two globular domains, connected by a spiral segment of about 73.1 A in length. The high quality of the constructs, forming the hinge-region, NBD94(566-663) and NBD94(674-793) enabled to determine the first crystallographic and solution structure, respectively. The crystal structure of NBD94(566-663) consists of two helices with 97.8 A and 48.6 A in length, linked by a loop. By comparison, the low resolution structure of NBD94(674-793) in solution represents a chair-like shape with three architectural segments.These structures give the first insight into how nucleotide binding impacts on the overall structure of RH and demonstrates the potential use of this region as a novel drug target

    Targeting the Mycobacterium ulcerans cytochrome bc1:aa3 for the treatment of Buruli ulcer

    Get PDF
    Mycobacterium ulcerans is the causative agent of Buruli ulcer, a neglected tropical skin disease that is most commonly found in children from West and Central Africa. Despite the severity of the infection, therapeutic options are limited to antibiotics with severe side effects. Here, we show that M. ulcerans is susceptible to the anti-tubercular drug Q203 and related compounds targeting the respiratory cytochrome bc; 1; :aa; 3; . While the cytochrome bc; 1; :aa; 3; is the primary terminal oxidase in Mycobacterium tuberculosis, the presence of an alternate bd-type terminal oxidase limits the bactericidal and sterilizing potency of Q203 against this bacterium. M. ulcerans strains found in Buruli ulcer patients from Africa and Australia lost all alternate terminal electron acceptors and rely exclusively on the cytochrome bc; 1; :aa; 3; to respire. As a result, Q203 is bactericidal at low dose against M. ulcerans replicating in vitro and in mice, making the drug a promising candidate for Buruli ulcer treatment

    Dual inhibition of the terminal oxidases eradicates antibiotic‐tolerant Mycobacterium tuberculosis

    No full text
    Abstract The approval of bedaquiline has placed energy metabolism in the limelight as an attractive target space for tuberculosis antibiotic development. While bedaquiline inhibits the mycobacterial F1F0 ATP synthase, small molecules targeting other components of the oxidative phosphorylation pathway have been identified. Of particular interest is Telacebec (Q203), a phase 2 drug candidate inhibitor of the cytochrome bcc:aa3 terminal oxidase. A functional redundancy between the cytochrome bcc:aa3 and the cytochrome bd oxidase protects M. tuberculosis from Q203‐induced death, highlighting the attractiveness of the bd‐type terminal oxidase for drug development. Here, we employed a facile whole‐cell screen approach to identify the cytochrome bd inhibitor ND‐011992. Although ND‐011992 is ineffective on its own, it inhibits respiration and ATP homeostasis in combination with Q203. The drug combination was bactericidal against replicating and antibiotic‐tolerant, non‐replicating mycobacteria, and increased efficacy relative to that of a single drug in a mouse model. These findings suggest that a cytochrome bd oxidase inhibitor will add value to a drug combination targeting oxidative phosphorylation for tuberculosis treatment

    The effect of NBD-Cl in nucleotide-binding of the major subunit alpha and B of the motor proteins F1FO ATP synthase and A(1)A(O) ATP synthase.

    No full text
    Subunit alpha of the Escherichia coli F(1)F(O) ATP synthase has been produced, and its low-resolution structure has been determined. The monodispersity of alpha allowed the studies of nucleotide-binding and inhibitory effect of 4-Chloro-7-nitrobenzofurazan (NBD-Cl) to ATP/ADP-binding. Binding constants (K ( d )) of 1.6 microM of bound MgATP-ATTO-647N and 2.9 microM of MgADP-ATTO-647N have been determined from fluorescence correlation spectroscopy data. A concentration of 51 microM and 55 microM of NBD-Cl dropped the MgATP-ATTO-647N and MgADP-ATTO-647N binding capacity to 50% (IC(50)), respectively. In contrast, no effect was observed in the presence of N,N'-dicyclohexylcarbodiimide. As subunit alpha is the homologue of subunit B of the A(1)A(O) ATP synthase, the interaction of NBD-Cl with B of the A-ATP synthase from Methanosarcina mazei Gö1 has also been shown. The data reveal a reduction of nucleotide-binding of B due to NBD-Cl, resulting in IC(50) values of 41 microM and 42 microM for MgATP-ATTO-647N and MgADP-ATTO-647N, respectively

    Crystal and solution structure of the C-terminal part of the Methanocaldococcus jannaschii A1AO ATP synthase subunit E revealed by X-ray diffraction and small-angle X-ray scattering.

    No full text
    The structure of the C-terminus of subunit E (E(101-206)) of Methanocaldococcus jannaschii A-ATP synthase was determined at 4.1 A. E(101-206) consist of a N-terminal globular domain with three alpha-helices and four antiparallel beta-strands and an alpha-helix at the very C-terminus. Comparison of M. jannaschii E(101-206) with the C-terminus E(81-198) subunit E from Pyrococcus horikoshii OT3 revealed that the kink in the C-terminal alpha-helix of E(81-198), involved in dimer formation, is absent in M. jannaschii E(101-206). Whereas a major dimeric surface interface is present between the P. horikoshii E(81-198) molecules in the asymmetric unit, no such interaction could be found in the M. jannaschii E(101-206) molecules. To verify the oligomeric behaviour, the low resolution structure of the recombinant E(85-206) from M. jannaschii was determined using small angle X-ray scattering. Rigid body modeling of two copies of one of the monomer established a fit with a tail to tail arrangement

    Structural Characterization of the Erythrocyte Binding Domain of the Reticulocyte Binding Protein Homologue Family of Plasmodium yoelii ▿ †

    No full text
    Invasion of the host cell by the malaria parasite is a key step for parasite survival and the only stage of its life cycle where the parasite is extracellular, and it is therefore a target for an antimalaria intervention strategy. Multiple members of the reticulocyte binding protein homologues (RH) family are found in all plasmodia and have been shown to bind to host red blood cells directly. In the study described here, we delineated the erythrocyte binding domain (EBD) of one member of the RH family, termed Py235, from Plasmodium yoelii. Moreover, we have obtained the low-resolution structure of the EBD using small-angle X-ray scattering. Comparison of the EDB structure to other characterized Plasmodium receptor binding domains suggests that there may be an overall structural conservation. These findings may help in developing new approaches to target receptor ligand interactions mediated by parasite proteins
    corecore