39 research outputs found

    Strain localization in pseudotachylyte veins at lower crustal conditions

    Get PDF
    Viscous shearing in the dry and strong lower crust often localizes in pseudotachylyte veins (i.e. quenched molten rocks formed by the frictional heat released during seismic slip), and it has been suggested that brittle (coseismic) grain-size reduction and fluid infiltration in the fractured domains are necessary to weaken the anhydrous granulitic lower crust. However, the deformation mechanisms responsible for the associated strain weakening and viscous shear localization in pseudotachylytes are yet to be explored. This study investigates the deformation microstructures of mylonitized pseudotachylytes in anorthosites from Nus- fjord, northern Norway, where ductile shear zones invariably nucleate in pseudotachylyte veins. Thus, pseudotachy- lytes are weaker than the host rock during superposed ductile deformation. Pristine pseudotachylytes contain microlites of plagioclase, clinopyroxene, amphibole and orthopyroxene, flow structures, and chilled margins. Some pseudotachylytes have lost the pristine microstructure and have recrystallized into a fine-grained ( < 10 \u3bc m) mixture of plagioclase, amphibole, clinopyroxene, biotite, quartz \ub1 K-feldspar \ub1 orthopyroxene. Thus, the fine grain size in the mylonites ( < 20 \u3bc m) is not the product of progressive grain-size reduction with increasing strain, but is an initial characteristic of the shear zone (pseudotachylyte) precursor. The stable mineral assemblage in the mylonitic foliation consists of plagioclase, hornblende, clinopyroxene \ub1 quartz \ub1 biotite \ub1 orthoclase. Geothermobarometry and thermodynamic modelling indicate that pristine pseudotachylytes and their mylonitized equivalents formed at ca. 700 \u30aC and 0.6-0.9 GPa. Diffusion creep and grain boundary sliding were identified as the main deformation mechanisms in the mylonite on the basis of the lack of crystallographic preferred orientations, the high degree of phase mixing, and the nucleation of hornblende in dilatant sites. In contrast with common observations that fluid infiltration is required to trigger viscous deformation, thermody- namic modelling indicates that a limited amount of fluid (0.4 wt%, similar to the bulk fluid content measured in the host rock) is sufficient to stabilize the mineral assemblage in the mylonite. This suggests that cosesimic grain size reduction resulted in fluid redistribution into the fractured domains and not necessarily in fluid infiltration. Recent experiments suggest that very small amount of water (tens of ppm) are effective in facilitating mineral reactions if sufficient porosity in present. Coseismic fracturing and creep cavitation in the mylonitized pseudotachylytes en- hance the porosity of the shear zone and result in nucleation of new phases in dilatant sites. This process keeps the grain size of the polymineralic aggregate in the grain-size sensitive creep field, thereby stabilizing strain localiza- tion in the mylonitized pseudotachylytes. This study highlights that pseudotachylytes caused by brittle faulting can be precursors of viscous, weak shear zones in the dry lower crust, indicating lower crustal earthquakes as agents of rheological change from strong, brittle lower crust, to strong lower crust with embedded fine grained, weak viscous shear zones

    Commensurate Growth of Magnetite Microinclusions in Olivine under Mantle Conditions

    Get PDF
    Magnetite-bearing multiphase solid inclusions hosted in metamorphic olivine have been interpreted as final products of the trapping of the aqueous fluid produced by the subduction-zone dehydration of former serpentinites. We provide here a careful analysis performed by microfocus single-crystal X-ray diffraction of inclusions found in harzburgites from the Almirez Complex (Bétic Cordillera, Spain) to determine the occurrence of preferential crystallographic orientation relationships between the olivine host and the magnetite inclusion. The results demonstrate that the magnetite–olivine interface selectively displays parallelism between crystallographic planes (111) and (100) and between crystallographic directions ⟨110⟩ and ⟨011⟩, respectively. This evidence points to a clear epitaxial growth of magnetite on olivine. The calculation of the geometrical misfit between the two lattices in contact as a function of their relative azimuthal orientation shows that, under the aforementioned reciprocal orientation, a perfect commensurism is achieved; i.e., all of the nodes of the magnetite lattice coincide with nodes of the olivine lattice. This particular relationship must be interpreted as a unique occurrence, playing a fundamental role in favoring the heterogeneous nucleation of magnetite on olivine

    OH-bearing planar defects in olivine produced by the breakdown of Ti-rich humite minerals from Dabie Shan (China)

    Get PDF
    The partial breakdown of Ti-chondrodite and Ti-clinohumite during exhumation from ultra-high pressure to amphibolite facies conditions in garnet-pyroxenites from Dabie Shan (China) produces coronas of olivine coexisting with ilmenite blebs. Fourier transform infrared (FTIR) spectra of this newly formed olivine exhibit absorption bands in the hydroxyl-stretching region. Two intense peaks were observed at 3,564 and 3,394 cm-1, identical in energy to peaks in Ti-clinohumite. Transmission electron microscopy (TEM) of the same olivine domains revealed the presence of a complex (001) planar intergrowth. These interlayers have a 1.35 nm repeat distance, which is characteristic of clinohumite. Such interlayers are also enriched in Ti with respect to the adjacent olivine as shown by energy dispersive spectrometry. The combined evidence from FTIR spectroscopy and TEM indicates that OH is incorporated along Ti-clinohumite planar defects. This study provides evidence that the nominally anhydrous phase olivine may contain OH as a humite-type defect beyond the breakdown of the hydrous humite minerals and confirms earlier suggestions that Ti plays a key role in OH incorporation in mantle olivine. We suggest that olivine containing Ti-clinohumite defects is an important phase for water transport in subduction zones and for the storage of water in cold subcontinental mantle. However, these defects are unlikely to be stable in hotter parts of the oceanic mantle such as where basaltic magmas are generated

    MICROWAVE-ASSISTED BRUCITE AND TALC REACTIONS WITH CO2 AS A PROXY FOR CARBON CAPTURE AND STORAGE BY SERPENTINE

    Get PDF
    In the last decades many studies have been focusing on Carbon Capture and Storage (CCS) to find a possible remedy to reduce the large increase of anthropogenic carbon dioxide (CO ). Mineral Carbonation (MC) is a potential solution for almost irreversible chemical long-term CCS. It concerns the combination of CaO and MgO with CO forming spontaneously and exothermically dolomite and magnesite. However, kinetic barriers pose sever limitations for the practical exploitation of this reaction. High fractions of MgO are available in silicates such as olivine, orthopyroxene, clinopyroxene and serpentine. To date, data reported that serpentine polymorphs, above all antigorite, is an excellent candidate for fixing the CO as the reaction efficiency is approximately 92% compared to lizardite (40%) and olivine (66%). This is due to the surface reactivity of approximately 18.7 m /g for the dehydrated antigorite compared to10.8 m /g for dehydrated lizardite and 4.6 m /g for olivine. The microwave assisted process for CCS is an innovative technology that can be employed to catalyze the reaction through thermal and non-thermal mechanisms. Some pioneering tests of direct carbonation by microwave hydrothermal equipment have been performed on olivine, lizardite and chrysotile powders [1] but not on antigorite. The structure of serpentine is characterized by corrugated stacked layers of silica and brucite. For this reason, MC involves dissolution of SiO layers, dissolution/dehydration of Mg(OH) layers, and precipitation of magnesium carbonate. To address the chemical response of the single phases, experiments have been performed by both a local microwave-source acting locally on a specific crystal surface and a volume source interacting with an ensemble of grains on synthetic powders and single crystals of pure brucite and talc. In a second step, treatments have been extended to chrysotile, lizardite and antigorite. A characterization of the mechanism and kinetics were performed by scanning probe microscopy on the surface of single crystals phases, supported by Raman spectroscopy and by Scanning and Transmission Electron Microscopy study performed on micro- and nano-sized grains. [1] White, et al. Reaction mechanisms of magnesium silicates with carbon dioxide in microwave fields. Final Report to the U.S. Department ofEnergy, National Energy Technology Laboratory (2004

    Coupled surface to deep Earth processes: Perspectives from TOPO-EUROPE with an emphasis on climate- and energy-related societal challenges

    Get PDF
    Understanding the interactions between surface and deep Earth processes is important for research in many diverse scientific areas including climate, environment, energy, georesources and biosphere. The TOPO-EUROPE initiative of the International Lithosphere Program serves as a pan-European platform for integrated surface and deep Earth sciences, synergizing observational studies of the Earth structure and fluxes on all spatial and temporal scales with modelling of Earth processes. This review provides a survey of scientific developments in our quantitative understanding of coupled surface-deep Earth processes achieved through TOPO-EUROPE. The most notable innovations include (1) a process-based understanding of the connection of upper mantle dynamics and absolute plate motion frames; (2) integrated models for sediment source-to-sink dynamics, demonstrating the importance of mass transfer from mountains to basins and from basin to basin; (3) demonstration of the key role of polyphase evolution of sedimentary basins, the impact of pre-rift and pre-orogenic structures, and the evolution of subsequent lithosphere and landscape dynamics; (4) improved conceptual understanding of the temporal evolution from back-arc extension to tectonic inversion and onset of subduction; (5) models to explain the integrated strength of Europe's lithosphere; (6) concepts governing the interplay between thermal upper mantle processes and stress-induced intraplate deformation; (7) constraints on the record of vertical motions from high-resolution data sets obtained from geo-thermochronology for Europe's topographic evolution; (8) recognition and quantifications of the forcing by erosional and/or glacial-interglacial surface mass transfer on the regional magmatism, with major implications for our understanding of the carbon cycle on geological timescales and the emerging field of biogeodynamics; and (9) the transfer of insights obtained on the coupling of deep Earth and surface processes to the domain of geothermal energy exploration. Concerning the future research agenda of TOPO-EUROPE, we also discuss the rich potential for further advances, multidisciplinary research and community building across many scientific frontiers, including research on the biosphere, climate and energy. These will focus on obtaining a better insight into the initiation and evolution of subduction systems, the role of mantle plumes in continental rifting and (super)continent break-up, and the deformation and tectonic reactivation of cratons; the interaction between geodynamic, surface and climate processes, such as interactions between glaciation, sea level change and deep Earth processes; the sensitivity, tipping points, and spatio-temporal evolution of the interactions between climate and tectonics as well as the role of rock melting and outgassing in affecting such interactions; the emerging field of biogeodynamics, that is the impact of coupled deep Earth – surface processes on the evolution of life on Earth; and tightening the connection between societal challenges regarding renewable georesources, climate change, natural geohazards, and novel process-understanding of the Earth system

    Acute Delta Hepatitis in Italy spanning three decades (1991–2019): Evidence for the effectiveness of the hepatitis B vaccination campaign

    Get PDF
    Updated incidence data of acute Delta virus hepatitis (HDV) are lacking worldwide. Our aim was to evaluate incidence of and risk factors for acute HDV in Italy after the introduction of the compulsory vaccination against hepatitis B virus (HBV) in 1991. Data were obtained from the National Surveillance System of acute viral hepatitis (SEIEVA). Independent predictors of HDV were assessed by logistic-regression analysis. The incidence of acute HDV per 1-million population declined from 3.2 cases in 1987 to 0.04 in 2019, parallel to that of acute HBV per 100,000 from 10.0 to 0.39 cases during the same period. The median age of cases increased from 27 years in the decade 1991-1999 to 44 years in the decade 2010-2019 (p &lt; .001). Over the same period, the male/female ratio decreased from 3.8 to 2.1, the proportion of coinfections increased from 55% to 75% (p = .003) and that of HBsAg positive acute hepatitis tested for by IgM anti-HDV linearly decreased from 50.1% to 34.1% (p &lt; .001). People born abroad accounted for 24.6% of cases in 2004-2010 and 32.1% in 2011-2019. In the period 2010-2019, risky sexual behaviour (O.R. 4.2; 95%CI: 1.4-12.8) was the sole independent predictor of acute HDV; conversely intravenous drug use was no longer associated (O.R. 1.25; 95%CI: 0.15-10.22) with this. In conclusion, HBV vaccination was an effective measure to control acute HDV. Intravenous drug use is no longer an efficient mode of HDV spread. Testing for IgM-anti HDV is a grey area requiring alert. Acute HDV in foreigners should be monitored in the years to come

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
    corecore